Giaỉ hệ phương trình \(\left\{{}\begin{matrix}2\left(x+y\right)\left(25-xy\right)=4x^2+17y^2+105\\x^2+y^2+2x-2y=7\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)
\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)
mấy bài dạng như này mk sẽ hướng dẩn nha .
a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha
b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)
\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................
c) đây là phương trình đối xứng loại 1 , có trên mang nha .
câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .
c/ \(y=0\) không phải nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y\left(x+y\right)=4y\\y\left(x+y\right)^2-2\left(x^2+1\right)=7y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\\frac{x^2+1}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\a^2-2b=7\end{matrix}\right.\) \(\Rightarrow a^2-2\left(4-a\right)=7\)
\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\Rightarrow b=1\\a=-5\Rightarrow b=9\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=3\\\frac{x^2+1}{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x^2+1-y=0\end{matrix}\right.\)
\(\Rightarrow x^2+1-\left(3-x\right)=0\Rightarrow...\)
TH2: làm tương tự
a/ \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)
Do \(x=y;x=-y\) đều ko phải nghiệm
\(\Rightarrow\frac{x^2+y^2}{\left(x+y\right)^2}=\frac{13}{25}\Leftrightarrow25\left(x^2+y^2\right)=13\left(x+y\right)^2\)
\(\Leftrightarrow12x^2-26xy+12y^2=0\)
\(\Leftrightarrow\left(2x-3y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=\frac{2}{3}x\\y=\frac{3}{2}x\end{matrix}\right.\)
Thay vào 1 trong 2 pt ban đầu là xong
b/ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\y\ge0\end{matrix}\right.\) \(\Rightarrow x+y>0\)
\(xy+x+y+y^2=x^2-y^2\)
\(\Leftrightarrow x\left(y+1\right)+y\left(y+1\right)=\left(x-y\right)\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(y+1\right)=\left(x+y\right)\left(x-y\right)\)
\(\Leftrightarrow y+1=x-y\Rightarrow x=2y+1\)
Thay vào pt dưới:
\(\left(2y+1\right)\sqrt{2y}+y\sqrt{2y}=2\left(y+1\right)\)
\(\Leftrightarrow\sqrt{2y}\left(3y+1\right)=2\left(y+1\right)\)
\(\Leftrightarrow y\left(9y^2+6y+1\right)=2\left(y^2+2y+1\right)\)
\(\Leftrightarrow9y^3+2y^2-3y-2=0\)
Nghiệm quá xấu, bạn coi lại đề
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
- Với \(x=0\) không phải nghiệm
- Với \(x\ne0\):
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{y^2+1}{x}=2\\\left(x+y\right)^2-2\left(\dfrac{y^2+1}{x}\right)=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\\dfrac{y^2+1}{x}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\u^2-2v=-1\end{matrix}\right.\)
\(\Rightarrow u^2-2\left(2-u\right)=-1\)
\(\Leftrightarrow u^2+2u-3=0\Rightarrow\left[{}\begin{matrix}u=1\Rightarrow v=1\\u=-3\Rightarrow v=5\end{matrix}\right.\)
\(\Rightarrow\) ... (bạn tự thế vào giải tiếp)
Nhận thấy \(x=y=0\) là 1 nghiệm
Với \(xy\ne0\) hệ tương đương:
\(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=2\\\left(\frac{x+y}{xy}\right)\left(\frac{1+xy}{xy}\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{2}{xy}=2\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(1+\frac{1}{xy}\right)=4\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\frac{1}{x}+\frac{1}{y}\\b=\frac{1}{xy}\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-2b=2\\a\left(b+1\right)=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-2\left(b+1\right)=0\\b+1=\frac{4}{a}\end{matrix}\right.\)
\(\Rightarrow a^2-\frac{8}{a}=0\Leftrightarrow a=3\Rightarrow b=\frac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=3\\\frac{1}{xy}=\frac{1}{3}\end{matrix}\right.\) bạn tự giải nốt