Chứng minh rằng:\(\sqrt{52+12\sqrt{10}}-\sqrt{47-6\sqrt{10}}=3\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{53+12\sqrt{10}}-\sqrt{47-6\sqrt{10}}=\sqrt{45+2.3\sqrt{5}.2\sqrt{2}+8}-\)\(\sqrt{45-2.3\sqrt{5}.\sqrt{2}+2}\)
\(=\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}-\sqrt{\left(3\sqrt{5}-\sqrt{2}\right)^2}\) \(=\left|3\sqrt{5}+2\sqrt{2}\right|-\left|3\sqrt{5}-\sqrt{2}\right|\) \(=3\sqrt{5}+2\sqrt{2}-\left(3\sqrt{5}-\sqrt{2}\right)=3\sqrt{2}\)
b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)
\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)
\(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)
______________________________________________
\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)
Từ (1) suy ra:
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)
a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)
b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)
\(=-60-144\sqrt{2}+30\sqrt{2}+144\)
\(=84-114\sqrt{2}\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=\left(4+\sqrt{15}\right)\left(4-2\sqrt{15}\right).2\)
\(=\left(4^2-15\right).2\)
\(=2\left(ĐPCM\right)\)
\(\text{c) }\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)
Ta có : \(6< 6.25\Rightarrow\sqrt{6}< \sqrt{6.25}\Rightarrow\sqrt{6}< 2.5\)
\(12< 12.25\Rightarrow\sqrt{12}< \sqrt{12.25}\Rightarrow\sqrt{12}< 3.5\)
\(20< 20.25\Rightarrow\sqrt{20}< \sqrt{20.25}\Rightarrow\sqrt{20}< 4.5\)
\(30< 30.25\Rightarrow\sqrt{30}< \sqrt{30.25}\Rightarrow\sqrt{30}< 5.5\)
\(42< 42.25\Rightarrow\sqrt{42}< \sqrt{42.25}\Rightarrow\sqrt{42}< 6.5\)
\(50< 56.5\Rightarrow\sqrt{50}< \sqrt{56.25}\Rightarrow\sqrt{50}< 7.5\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 2.5+3.5+4.5+5.5+6.5+7.5\)
\(\Rightarrow\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\) \(\left(ĐPCM\right)\)
Vậy \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)
\(\)\(\text{a) }\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)
Ta có : \(1< 9\Rightarrow\sqrt{1}< \sqrt{9}\Rightarrow\sqrt{1}< 3\)
\(2< 9\Rightarrow\sqrt{2}< \sqrt{9}\Rightarrow\sqrt{2}< 3\)
\(3< 9\Rightarrow\sqrt{3}< \sqrt{9}\Rightarrow\sqrt{3}< 3\)
\(...\)
\(8< 9\Rightarrow\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3+3+...+3_{\left(\text{8 số hạng 3}\right)}\) \(\) \(\)
\(\) \(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3\cdot8\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\) \(\left(ĐPCM\right)\)
Vậy \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)
\(\text{b) }\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)
Ta có : \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}< \dfrac{1}{\sqrt{100}}\)
\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}< \dfrac{1}{\sqrt{100}}\)
\(...\)
\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}_{\left(\text{100 số hạng}\dfrac{1}{\sqrt{100}}\right)}\)
\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}\cdot100\)
\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{10}{\sqrt{100}}\)
\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\) \(\left(ĐPCM\right)\)
Vậy \(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)
\(\)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{1+2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{1-2\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}=1+\sqrt{5}-\left(1-\sqrt{5}\right)=1+\sqrt{5}-1+\sqrt{5}=2\sqrt{5}\)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
b) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
c) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}=0\)
Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+\sqrt{2}}\)
\(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)\left(\sqrt{6}+1\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{\sqrt{2}\left(3\sqrt{6}+3+\sqrt{30}+\sqrt{5}\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{6\sqrt{3}+3\sqrt{2}+2\sqrt{15}+\sqrt{10}-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)
\(=\dfrac{6\sqrt{3}+3\sqrt{2}+\sqrt{15}+\sqrt{10}-\sqrt{5}}{ }\)
Đề sai rồi bạn
mình sửa lại đề vì đề sai
\(\sqrt{53+12\sqrt{10}}-\sqrt{47-6\sqrt{10}}=\sqrt{53+2\sqrt{360}}-\sqrt{47-2\sqrt{90}}=\sqrt{45+2\sqrt{45}\sqrt{8}+8}-\sqrt{45-2\sqrt{45}\sqrt{2}+2}=\sqrt{45}+2\sqrt{2}-\sqrt{45}+\sqrt{2}=3\sqrt{2}\)
√ 53 + 12 √ 10 − √ 47 − 6 √ 10 = √ 53 + 2 √ 360 − √ 47 − 2 √ 90 = √ 45 + 2 √ 45 √ 8 + 8 − √ 45 − 2 √ 45 √ 2 + 2 = √ 45 + 2 √ 2 − √ 45 + √ 2 = 3 √ 2