K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Để em trình bày dễ hiểu có chú thíck lun cho chụy :) 

Ta có : 

\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)

\(\Leftrightarrow\)\(\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\) ( cộng 3 phân số đầu cho 3, trừ phân số cuối cho 3 ) 

\(\Leftrightarrow\)\(\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\) ( quy đồng ) 

\(\Leftrightarrow\)\(\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)

Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\ne0\) ( vì tổng lớn hơn 0 nên khác 0 ) 

Nên \(x+2010=0\)

\(\Rightarrow\)\(x=-2010\) ( chuyển vế ) 

Vậy \(x=-2010\)

Chúc chụy học tốt ~ 

 x + 2   x + 3   x + 4   x + 2028 
▬▬▬ + ▬▬▬ + ▬▬▬▬ + ▬▬▬▬▬ = 0 
2008    2007   2006      6 

<=> 2007.2006.6.x + 2.2007.2006.6 + 2008.2006.6x + 3.2008.2006.6 + 2008.2007.6x + 4.2008.2007.6 + 2008.2007.2006x + 2028.2008.2007.2006 = 0 

<=> ( 2007.2006.6 + 2008.2006.6 + 2008.2007.6 + 2008.2007.2006 )x = -( 2.2007.2006.6 + 3.2008.2006.6 + 4.2008.2007.6 + 2028.2008.2007.2006 ) 

<=> x = -( 2.2007.2006.6 + 3.2008.2006.6 + 4.2008.2007.6 + 2028.2008.2007.2006 ) / ( 2007.2006.6 + 2008.2006.6 + 2008.2007.6 + 2008.2007.2006 ) = -2010

25 tháng 2 2017

X= -2010

25 tháng 2 2017

(x+2/2008+1)+(x+3/2007+1)+(x+4/2006+1)+(x+2028/6-3)=0

=x+2010/2008+ x+2010/2007+ x+2010/2006+ x+2010/6=0

=(x+2010)(1/2008+1/2007+1/2006+1/6)=

VÌ 1/2008 +1/2007 +1/2006+1/6 khác 0

=>x+2010=0=>x=-2010

1 tháng 2 2019

3 hạng tử đầu , mỗi hạng tử cùng cộng 1 

Hạng tử cuối trừ 3

Nhân tử chung : x + 2010 

1 tháng 2 2019

\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)

\(\Leftrightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\)

\(\Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)

\(\Rightarrow x+2010=0\Leftrightarrow x=-2010\)

23 tháng 4 2020

a, (3x - 2)(4x + 3) = (2 - 3x)(x - 1)

\(\Leftrightarrow\) (3x - 2)(4x + 3) - (2 - 3x)(x - 1) = 0

\(\Leftrightarrow\) (3x - 2)(4x + 3) + (3x - 2)(x - 1) = 0

\(\Leftrightarrow\) (3x - 2)(4x + 3 + x - 1) = 0

\(\Leftrightarrow\) (3x - 2)(5x + 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-2}{5}\end{matrix}\right.\)

Vậy S = {\(\frac{2}{3}\); \(\frac{-2}{5}\)}

b, x2 + (x + 3)(5x - 7) = 9

\(\Leftrightarrow\) x2 - 9 + (x + 3)(5x - 7) = 0

\(\Leftrightarrow\) (x - 3)(x + 3) + (x + 3)(5x - 7) = 0

\(\Leftrightarrow\) (x + 3)(x - 3 + 5x - 7) = 0

\(\Leftrightarrow\) (x + 3)(6x - 10) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\6x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy S = {-3; \(\frac{5}{3}\)}

c, 2x2 + 5x + 3 = 0

\(\Leftrightarrow\) 2x2 + 2x + 3x + 3 = 0

\(\Leftrightarrow\) 2x(x + 1) + 3(x + 1) = 0

\(\Leftrightarrow\) (x + 1)(2x + 3) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy S = {-1; \(\frac{3}{2}\)}

d, \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}=\frac{3-2x}{2009}+\frac{3-2x}{2010}\)

\(\Leftrightarrow\) \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}-\frac{3-2x}{2009}-\frac{3-2x}{2010}=0\)

\(\Leftrightarrow\) (3 - 2x)\(\left(\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)\) = 0

\(\Leftrightarrow\) 3 - 2x = 0

\(\Leftrightarrow\) x = \(\frac{3}{2}\)

Vậy S = {\(\frac{3}{2}\)}

Chúc bn học tốt!!

24 tháng 4 2020

Thanks a lot !!!

28 tháng 2 2020

Hướng dẫn:

a) Đặt : \(x^2-2x+1=t\)Ta có: 

\(\frac{1}{t+1}+\frac{2}{t+2}=\frac{6}{t+3}\)

b) Đặt : \(x^2+2x+1=t\)

Ta có pt: \(\frac{t}{t+1}+\frac{t+1}{t+2}=\frac{7}{6}\)

c)ĐK: x khác 0

Đặt: \(x+\frac{1}{x}=t\)

KHi đó: \(x^2+\frac{1}{x^2}=t^2-2\)

Ta có pt: \(t^2-2-\frac{9}{2}t+7=0\)

28 tháng 2 2020

a) Đặt \(x^2-2x+3=v\)

Phương trình trở thành \(\frac{1}{v-1}+\frac{2}{v}=\frac{6}{v+1}\)

\(\Rightarrow\frac{v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}=\frac{6v\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}\)

\(\Rightarrow v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)=6v\left(v-1\right)\)

\(\Rightarrow v^2+v+2v^2-2=6v^2-6v\)

\(\Rightarrow3v^2-7v+2=0\)

Ta có \(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)

\(\Rightarrow\orbr{\begin{cases}v=\frac{7+5}{6}=2\\v=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2-2x+3=2\\x^2-2x+3=\frac{1}{3}\end{cases}}\)

+) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

+)\(x^2-2x+3=\frac{1}{3}\)

\(\Rightarrow x^2-2x+\frac{8}{3}=0\)

Ta có \(\Delta=2^2-4.\frac{8}{3}=\frac{-20}{3}< 0\)

Vậy phương trình có 1 nghiệm là x = 1

25 tháng 2 2020

\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\\ \Leftrightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\\ \Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\\ \Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\\ \Leftrightarrow x+2010=0\\ \Leftrightarrow x=-2010\)

Vậy pt có tập nghiệm \(S=\left\{-2010\right\}\)

Bài 15:

Ta có: \(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)

\(\Leftrightarrow\frac{x+2}{2008}+1+\frac{x+3}{2007}+1+\frac{x+4}{2006}+1+\frac{x+2028}{6}-3=0\)

\(\Leftrightarrow\frac{x+2+2008}{2008}+\frac{x+3+2007}{2007}+\frac{x+4+2006}{2006}+\frac{x+2028-18}{6}=0\)

\(\Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)

\(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}>0\)

nên x+2010=0

hay x=-2010

Vậy: x=-2010

Bài 17:

Ta có: \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+1+65}{65}+\frac{x+3+63}{63}=\frac{x+5+61}{61}+\frac{x+7+59}{59}\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\)

nên x+66=0

hay x=-66

Vậy: x=-66