chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d la USC của 9n+7 và 4n+3
=> 4(9n+7)=36n+28 chia hết cho d
=> 9(4n+3)=36n+27 chia hết cho d
=> 36n+28 - 36n-27 =1 chia hết cho d => d=1
=> 9n+7 và 4n+3 là hai số nguyên tố cùng nhau
Đặt ƯCLN ( 9n + 7 , 4n + 3 ) = d
=> \(\hept{\begin{cases}9n+7⋮d\\4n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}4.\left(9n+7\right)⋮d\\9.\left(4n+3\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}36n+28⋮d\\36n+27⋮d\end{cases}}\)=> ( 36n + 28 ) - ( 36n + 27 ) \(⋮d\)
=> 1 \(⋮d\)=> d thuộc Ư ( 1 ) = 1 Mà d lớn nhất => d = 1
Vậy 9n + 7 và 4n + 3 là hai số nguyên tố cùng nhau
Gọi d là Ước chung lớn nhất của 5n+9 và 4n+7
=> 5n+9 chia hết cho d
4n+7 chia hết cho d
=> 4( 5n + 9 ) - 5( 4n + 7 ) chia hết cho d
=> ( 20n + 36 ) - ( 20n + 35 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 5n+9 và 4n+7 là hai số nguyên tố cùng nhau
Gọi ƯCLN(4n+3;3n+2) la d
Ta có
4n+3 chia hết cho d ; 3n+2 chia hết cho d
=> 3.(4n+3) chia hết cho d ; 4.(3n+2) chia hết cho d
=> 12n+9 chia hết cho d ; 12n+8 chia hết cho d
=> 12n+9-(12n+8) chia hết cho d
=> 1 chia hết cho d
=> d= 1
Vậy ƯCLN(4n+3;3n+2)=1
=> 4n+3 và 3n+2 là hai số nguyên tố cùng nhau
a. Gọi d là ƯCLN ( 7n + 10 ; 5n + 7)
⇒ 7n + 10 chia hết cho d⇔5(7n + 10) chia hết cho d ⇔35n+50 chia hết cho d
và ⇒ 5n + 7 chia hết cho d ⇔ 7(5n + 7) chia hết cho d⇔35n+49 chia hết cho d
⇒35n+50-(35n+49) chia hết cho d⇔1 chia hết cho d⇒d=1
Vậy 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
b.
Giả sử d là ƯCLN ( 2n + 3 ;4n+8) và d là SNT
⇒ 4n + 8 chia hết cho d
và ⇒2n+3 chia hết cho d ⇔ 2(2n+3) chia hết cho d⇔4n+6 chia hết cho d
⇒4n+8-(4n+6) chia hết cho d⇔2 chia hết cho d và 2n+3 là số lẻ⇒d=1
Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
c.Gọi d là ƯCLN ( 9n + 24 và 3n + 4)
⇒ 9n + 24 chia hết cho d
và ⇒3n + 4 chia hết cho d ⇔ 3(3n+4) chia hết cho d⇔9n+12 chia hết cho d
⇒9n + 24-(9n+12) chia hết cho d⇔12 chia hết cho d và 3n + 4 ko chia hết cho 3 ⇒d=2
Để 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau thì d≠≠ 2
⇒n ko chia hết cho 2
Vậy Nếu n ko chia hết cho 2 thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau
d,
a. Gọi d là ƯCLN ( 18n + 3 ; 21n + 7)
⇒ 18n + 3 chia hết cho d⇔7( 18n + 3) chia hết cho d ⇔126n+21 chia hết cho d
và ⇒ 21n + 7 chia hết cho d ⇔ 6(21n + 7) chia hết cho d⇔126n+42 chia hết cho d
⇒126n+42-(126n+21) chia hết cho d⇔21 chia hết cho d⇒d∈{3;7}
Mà 18n+3 ko chia hết cho 7 và 21n+7 ko chia hết cho 3⇒d=1
Vậy 18n + 3 và 21n + 7 là 2 số nguyên tố cùng nhau
Ps: nhớ k
# Aeri #
b: Vì 2n+3 là số lẻ
mà 4n+8 là số chẵn
nên 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
a)\(7n+10⋮7n+10\)
\(\Rightarrow5\left(7n+10\right)⋮7n+10\Rightarrow35n+50⋮7n+10\)
\(5n+7⋮5n+7\)
\(\Rightarrow7\left(5n+7\right)⋮5n+7\Rightarrow35n+49⋮5n+7\)
gọi \(UCLN\left(7n+10;5n+7\right)\)là d
\(\Rightarrow35n+50-35n+49⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
\(\Rightarrowđpcm\)
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.