K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 5 2020

\(tan^2\left(x-a\right)+tan^2\left(x+a\right)=\frac{sin^2\left(x-a\right)}{cos^2\left(x-a\right)}+\frac{sin^2\left(x+a\right)}{cos^2\left(x+a\right)}\)

\(=\frac{sin^2\left(x-a\right).cos^2\left(x+a\right)+sin^2\left(x+a\right).cos^2\left(x-a\right)}{cos^2\left(x-a\right).cos^2\left(x+a\right)}\)

\(=\frac{\left(sin2x-sin2a\right)^2+\left(sin2x+sin2a\right)^2}{\left(cos2x+cos2a\right)^2}\)

\(=\frac{sin^22x-2sin2x.sin2a+sin^22a+sin^22x+2sin2x.sin2a+sin^22a}{\left(cos2x+cos2a\right)^2}\)

\(=\frac{2\left(sin^22x+sin^22a\right)}{\left(cos2x+cos2a\right)^2}\)

Mọi người giúp em giải bài này ạ, em cảm ơn Bài 1: Rút gọn biểu thức: A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\) B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\) C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\) D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos...
Đọc tiếp

Mọi người giúp em giải bài này ạ, em cảm ơn

Bài 1: Rút gọn biểu thức:

A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)

B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)

C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)

D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)

E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)

\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)

\(G=\frac{1+cos2a-cosa}{2sina-sina}\)

H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)

Bài 2: chứng minh

a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)

b) chứng minh biểu thức sau độc lập với biến x:

A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)

c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)

e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)

f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)

g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)

h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)

k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)

Bài 3: giải bất phương trình:

a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)

b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)

c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)

d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)

e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)

f)\(\frac{2x+1}{-x^2+x+6}\ge0\)

5
NV
1 tháng 5 2019

\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)

\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)

\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)

NV
1 tháng 5 2019

\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)

\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)

\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)

Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)

\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)

\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)

NV
10 tháng 4 2019

1/

\(tanx=\frac{sinx}{cosx}=\frac{sin^2x}{sinx.cosx}=\frac{2sin^2x}{2sinx.cosx}\)

\(=\frac{2\left(\frac{1-cos2x}{2}\right)}{sin2x}=\frac{1-cos2x}{sin2x}\)

2/

\(\frac{sin\left(60-x\right)cos\left(30-x\right)+cos\left(60-x\right)sin\left(30-x\right)}{sin4x}=\frac{sin\left(60-x+30-x\right)}{sin4x}=\frac{sin\left(90-2x\right)}{2sin2x.cos2x}\)

\(=\frac{cos2x}{2sin2x.cos2x}=\frac{1}{2sin2x}\)

3/

\(4cos\left(60+a\right)cos\left(60-a\right)+2sin^2a\)

\(=2\left(cos\left(60+a+60-a\right)+cos\left(60+a-60+a\right)\right)+2sin^2a\)

\(=2cos120+2cos2a+2\left(\frac{1-cos2a}{2}\right)\)

\(=-1+2cos2a+1-cos2a=cos2a\)

17 tháng 11 2019

Ta có :
\(\frac{sinx+sin\left(\frac{x}{2}\right)}{1+cosx+cos\left(\frac{x}{2}\right)}=\frac{2sin\left(\frac{x}{2}\right).cos\left(\frac{x}{2}\right)+sin\left(\frac{x}{2}\right)}{2cos^2\left(\frac{x}{2}\right)+cos\left(\frac{x}{2}\right)}\)

\(=\frac{sin\left(\frac{x}{2}\right)\left(2cos\left(\frac{x}{2}\right)+1\right)}{cos\left(\frac{x}{2}\right)\left(2cos\left(\frac{x}{2}\right)+1\right)}=\frac{sin\left(\frac{x}{2}\right)}{cos\left(\frac{x}{2}\right)}\)

\(=tan\left(\frac{x}{2}\right)\left(đpcm\right)\)

11 tháng 7 2021

a) \(\left|sinx-cosx\right|+\left|sinx+cosx\right|=2\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+2\left|sinx-cosx\right|\left|sinx+cosx\right|+\left(cosx+sinx\right)^2=4\)

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)+2\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|=4\)

\(\Leftrightarrow\left|sin^2x-cos^2x\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=1\\sin^2x-cos^2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=sin^2x+cos^2x\\sin^2x-cos^2x=-\left(sin^2x+cos^2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=0\\sin^2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\)\(\Rightarrow cosx.sinx=0\Rightarrow sin2x=0\)

\(\Rightarrow x=\dfrac{k\pi}{2},k\in Z\)

Vậy...

b) ĐK:\(x\ne\dfrac{k\pi}{2};k\in Z\)

Pt \(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cosx}{sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{cosx.sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)}{sinx.cosx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\left(1\right)\\\dfrac{sinx-\sqrt{3}cosx}{sinx.cosx}=4\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow tanx=-\sqrt{3}\Leftrightarrow x=-\dfrac{\pi}{3}+k\pi,k\in Z\)

Từ (2)\(\Leftrightarrow sinx-\sqrt{3}cosx=4sinx.cosx\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=2sinx.cosx\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin2x\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy \(\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

c) ĐK: \(x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\left(k\in Z\right)\)

Pt \(\Leftrightarrow\left(\sqrt{2}sinx-1\right)^2+\left(\sqrt{3}tan2x-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}sinx-1=0\\\sqrt{3}tan2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}sinx=\dfrac{1}{\sqrt{2}}\\tan2x=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)

Vậy pt vô nghiệm

NV
28 tháng 6 2021

1. 

ĐKXĐ: \(x\ne k\pi\)

\(\Leftrightarrow\left(2cos2x-1\right)\left(sinx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\sinx=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

NV
28 tháng 6 2021

2. Bạn kiểm tra lại đề, pt này về cơ bản ko giải được.

3.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{3\left(sinx+\dfrac{sinx}{cosx}\right)}{\dfrac{sinx}{cosx}-sinx}-2cosx=2\)

\(\Leftrightarrow\dfrac{3\left(1+cosx\right)}{1-cosx}+2\left(1+cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(\dfrac{3}{1-cosx}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(loại\right)\\cosx=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016