Cho tam giác ABC(AB<AC), AD là đường phân giác của góc A(D thuộc BC). Trên tia đối của tia DA lấy điểm I sao cho góc ACI= góc ABD. Chứng minh
a, tam giác ABD đồng dạng tam giác ACI
b, tam giác CDI cân
c, AD.CD=AI.BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Xet ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc DBA=góc DAC
=>ΔABD đồng dạng với ΔCAD
b: góc EAF+góc EDF=180 độ
=>AFDE nội tiếp
=>góc AFD+góc AED=180 độ
=>góc AFD=góc CED
Bạn ơi hình như thiếu đề
nếu câu hỏi là như này
Cho Tam Giác ABC ( AB<AC) , đường phân giác DA .Trên tia đối của tia DA lấy điểm I sao cho góc ACI = góc BAD . Chứng minh:
a. tam giac ADB và tam giác ACI đồng dạng
b. tam giác ADB và tam giác CDI đồng dạng
c. AD^2 = AB.AC - DB.BC
mk trả lời này
a.Xét tgiac ADB và tgiac ACI có:
góc BAD = góc IAC(gt)
góc BDA= góc ICA(gt)
Vậy tgiac ADB đồng dạng với tgiac ACI(g.g)
=> góc ABD = góc AIC => góc ABD = góc DIC
b.xét tgiac ADB và tgiac CDI có:
góc ADB= góc CDI(đối đỉnh)
góc ABD= góc CID(cmt)
vậy tgiac ADB đồng dạng với tgiac CDI(g.g)
c.theo câu a tgiac ADB đồng dạng với tgiac ACI nên ta có:
AD/AC=AB/AI=> AB.AC=AD.AI(1)
theo câu b ta lại có tgiac ADB đồng dạng với tgiac CDI nên ta có:
BD/DI=AD/CD=> BD.CD=DI.AD(2)
TỪ (1) VÀ (2) ta có:
AB.AC-DB.DC=AD.AI-DI.AD=AD.(AI-DI)=AD.AD=AD2(ĐPCM)
nếu đúng đề bài thì k mk nha