Tính:S2=3-3^2+3^3-3^4+...-3^2012
Giải hộ mk vs mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.A,Ta có:
\(\frac{x+5}{x+3}< 1\)
\(\Leftrightarrow1+\frac{2}{x+3}< 1\)
\(\Leftrightarrow\frac{2}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
\(\Leftrightarrow x< -3\)
B,\(\frac{x+3}{x+4}>1\)
\(\Leftrightarrow\frac{x+4-1}{x+4}>1\)
\(\Leftrightarrow1+\frac{-1}{x+4}>1\)
\(\Leftrightarrow\frac{-1}{x+4}>0\)
\(\Leftrightarrow x+4< 0\)
\(\Leftrightarrow x< -4\)
2.A,Ta có:
\(\left(2x-1\right)^2\ge0,\forall x\)
\(\Leftrightarrow-3\left(2x-1\right)^2\le0\)
\(\Leftrightarrow5-3\left(2x-1\right)^2\le5\)
Vậy \(Max_A=5\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Câu B hình như tìm GTNN thì phải
Điều kiện x khác 0
\(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\)
\(\Rightarrow\frac{5}{2}x-\frac{3}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{5}{2}x=2\Rightarrow x=\frac{4}{5}\)
a)Ta có: \(\dfrac{x+3}{x+1}+\dfrac{1}{3}\ge0\)
\(\Leftrightarrow\dfrac{3x+9+x+1}{3\left(x+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{4x+10}{3x+3}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1>0\\4x+10\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-1\\x\le-\dfrac{5}{2}\end{matrix}\right.\)
b) Ta có: \(\dfrac{x+2}{x+3}+\dfrac{1}{3}\le0\)
\(\Leftrightarrow\dfrac{3x+6+x+3}{3\left(x+3\right)}\le0\)
\(\Leftrightarrow\dfrac{4x+9}{3x+9}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+9>0\\4x+9\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow-3< x\le-\dfrac{9}{4}\)
a)\(\dfrac{x+3}{x+1}\ge-\dfrac{1}{3}\left(x\ne-1\right)\)
\(\Leftrightarrow\dfrac{x+3}{x+1}+\dfrac{1}{3}\ge0\)
\(\Leftrightarrow\dfrac{3x+9+x+1}{3x+3}\ge0\)
\(\Leftrightarrow\dfrac{4x+10}{3x+3}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x+10\ge0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+10\le0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{5}{2}\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{-5}{2}\\x< -1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-1\\x\le\dfrac{-5}{2}\end{matrix}\right.\)
b) \(\dfrac{x+2}{x+3}\le-\dfrac{1}{3}\left(x\ne-3\right)\)
\(\dfrac{x+2}{x+3}+\dfrac{1}{3}\le0\)
\(\Leftrightarrow\dfrac{3x+6+x+3}{3x+9}\le0\)
\(\Leftrightarrow\dfrac{4x+9}{3x+9}\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x+9\ge0\\3x+9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+9\le0\\3x+9>0\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{9}{4}\\x< -3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-\dfrac{9}{4}\\x>-3\end{matrix}\right.\end{matrix}\right.\)
TH1: loại
TH2: TM
Vậy no của BPT là :\(-\dfrac{9}{4}\ge x>-3\)
chúc bạn học tốt
a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)
b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)
\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)