cho a,b,c là các số dương. CMR:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}< \frac{1}{2}\left(a+b+c\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
\(VT=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)
\(=3+\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\)(1)
Theo BĐT AM-GM: \(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\right]\ge\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)
Tương tự: \(\frac{1}{2}\left[\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)
\(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{a^2}}\)
Cộng theo vế 3 BĐT trên rồi thay vào 1 ta sẽ thu được đpcm.
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
\(1+a^2=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)
Tương tự, ta có: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(;\)\(1+c^2=\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\)\(\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) ( do a, b, c dương )
\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
...
Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)
\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)
Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\) \(\left(1\right)\)
Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)
\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)
\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\) (Do a2+b2+c2=1) \(\left(2\right)\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\) Tự chứng minh \(\left(3\right)\)
Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)
Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)