K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

dạo này chịu khó viết ra vở nhỉ

25 tháng 10 2021
Tam giác ABC, đường cao AH. Gọi M,N,P lần lượt là trung điểm AB, AC, BC. a/ Cmr: MP=NH b/ Cmr: HPNM là hình thang cân. - Hoc24
25 tháng 10 2021

a: Xét ΔABC có

N là trung điểm của AB

P là trung điểm của AC

Do đó: NP là đường trung bình của ΔBAC

Suy ra: NP//BC

hay BNPC là hình thang

26 tháng 10 2021

giúp mỉnh câu b,c,d với ạ

26 tháng 10 2021

a: Xét ΔABC có

N là trung điểm của AB

P là trung điểm của AC

Do đó: NP là đường trung bình của ΔBAC

Suy ra: NP//BC

hay BNPC là hình thang

26 tháng 10 2021

giúp mình b,c,d với ạ

 

13 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

b: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

23 tháng 8 2021

a/ Ta có: M là trung điểm của AB, N là trung điểm của BC

⇒ MN là đường trung bình của △ABC ⇒ MN // AC (1)

- AB hay AM ⊥ AC (2)

Từ (1) và (2) 

Vậy: Tứ giác AMNC là hình thang vuông (đpcm)

===========

b/ Áp dụng định lí Pytago vào △ABC được: \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

Do MN là đường trung bình của △ABC \(\Rightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)

- E là trung điểm AM, F là trung điểm CN ⇒ EF là đường trung bình của hình thang AMNC ⇒ \(EF=\dfrac{MN+AC}{2}=\dfrac{6+12}{2}=9\left(cm\right)\)

Vậy: EF = 9 cm

25 tháng 10 2021
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm AB, AC. Gọi E là điểm đối xứng với M qua N. a) Chứng minh tứ giác
25 tháng 10 2021

h mik cx bị kẹt ở câu c với d giống bạn ;-;

 

21 tháng 10 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC

b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC=6\left(cm\right)\)

c, Vì MN//BC nên BMNC là hình thang

21 tháng 10 2021

giải chi tiết giúp em đc ko ạ 

 

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

Xét ΔBAC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=16(cm)

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Xét tứ giác AMNC có MN//AC

nên AMNC là hình thang

mà \(\widehat{A}=90^0\)

nên AMNC là hình thang vuông