K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2020

ta có : 

\(B=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)

ta có : \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)

            \(\frac{2011}{2012}>\frac{2011}{2011+2012}\)

=> \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)

hay A>B

28 tháng 4 2016

Ta có: \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)

Nên \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)\(\Rightarrow A>B\)


 

28 tháng 4 2016

So sánh: \(\frac{2010}{2011}+\frac{2011}{2012}\) với \(\frac{2010+2011}{2011+2012}\)

3 tháng 9 2015

\(A=\left(1-\frac{1}{2011}\right)-\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)-\left(1-\frac{1}{2014}\right)\)

\(=1-\frac{1}{2011}-1+\frac{1}{2012}+1-\frac{1}{2013}-1+\frac{1}{2014}\)

\(=\left(1-1+1-1\right)-\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}\right)\)

 

còn lại bó tay @@ 

3 tháng 9 2015

\(A=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)

và 

\(B=\frac{1}{2010.2011}-\frac{1}{2012.2013}\)

 

12 tháng 6 2019

Ta có:

\(x=\frac{1989}{1990}=1-\frac{1}{1990}\)

\(y=\frac{2011}{2012}=1-\frac{1}{2012}\)

Do \(\frac{1}{1990}>\frac{1}{2012}\)=> \(-\frac{1}{1990}< -\frac{1}{2012}\) => \(1-\frac{1}{1990}< 1-\frac{1}{2012}\)

=> \(x=\frac{1989}{1990}< y=\frac{2010}{2012}\)

12 tháng 6 2019

Ta có :

x = \(\frac{1989}{1990}\)= 1 - \(\frac{1}{1990}\)

y = \(\frac{2011}{2012}\)= 1 - \(\frac{1}{2012}\)

Do \(\frac{1}{1990}\)\(\frac{1}{2012}\)=> \(-\)\(\frac{1}{1990}\)\(-\)\(\frac{1}{2012}\)=> \(1\)\(-\)\(\frac{1}{1990}\)\(< 1-\)\(\frac{1}{2012}\)

=> \(x\)\(=\)\(\frac{1989}{1990}\)\(< y=\)\(\frac{2010}{2012}\)

28 tháng 2 2016

Q=2010+2011+2012/2011+2012+2013

Q=2010/2011+2012+2013 + 2011/2011+2012+2013 + 2012/2011+2012+2013

TA CÓl: 2010/2011>2010/2011+2012+2013

             2011/2012>2011/2011+2012+2013

             2012/2013>2012/2011+2012+2013 

=> P>Q 

20 tháng 1 2019

Mình thấy bạn làm đúng đó

6 tháng 10 2017

bn cầm máy tính mà bấm sau đó rồi so sánh kết quả, nha

26 tháng 9 2017

Bạn ơi cho mình hỏi. Đây có phải bài trog toán tuổi thơ ko? 

28 tháng 2 2016

So sánh 2 phân số sau  $\frac{10^{2011}+10}{10^{2012}+10}v\text{à}\frac{10^{2012}-10}{10^{2013}-10}$102011+10102012+10 và102012−10102013−10 

kick dzô chữ xanh là được!! OK

28 tháng 2 2016

Ta có : 

10. A = \(\frac{10.\left(10^{2011}+1\right)}{10^{2012}+1}\)

         = \(\frac{10^{2012}+10}{10^{2012}+1}\)

         = \(\frac{10^{2012}+1+9}{10^{2012}+1}\)

         = \(\frac{10^{2012}+1}{10^{2012}+1}-\frac{9}{10^{2012}+1}\)

         = 1 - \(\frac{9}{10^{2012}+1}\)

10 . B = \(\frac{10.\left(10^{2012}+1\right)}{10^{2013}+1}\)

          = \(\frac{10^{2013}+10}{10^{2013}+1}\)

          = \(\frac{10^{2013}+1+9}{10^{2013}+1}\)

          = 1 - \(\frac{9}{10^{2013}+1}\)

Vì \(\frac{9}{10^{2012}+1}\) >\(\frac{9}{10^{2013}+1}\)  nên 10.A > 10.B

=> A >B 

Vậy ...........

7 tháng 3 2017

TA CÓ :

\(B=\frac{2010+2011+2012}{2011+2012+2013}\)

\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

=> A > B 

VẬY , A > B

Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????

16 tháng 1 2019

A=2.998508205

B=0.999502735

suy ra A>B

30 tháng 5 2019

                                              Bài giải

Theo bài ra :  

\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)

\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

Ta có : 

\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)

\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)

\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }A>B\)