Cho tam giác nhọn ABC nội tiếp đường tròn O. Gọi D,E,Flần lượt là chân các đường cao kẻ từ ba đỉnh A,B,C của tam giác. Đường thẳng EF cắt đường tròn O tại M (M khác phía với O so với đường thẳng AB). Đường thẳng BM cắt đường thẳng DF tại N. Chứng minh rằng AM=AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì d là tiếp tuyến của (O) tại A
⇒ OA ⊥ D mà d // d'
⇒ OA ⊥ D tại E
⇒ \(\widehat{AEB}=90^0\)
Suy ra: điểm E thuộc đường tròn đường kính AB (1)
Ta có: AF ⊥ BC ⇒ \(\widehat{AFB}=90^0\)
Suy ra: điểm F thuộc đường tròn đường kính AB (2)
Từ (1) và (2): ⇒ A, B, E, F cùng thuộc đường tròn đường kính AB
Từ đó: tam giác ABFE nội tiếp
b) Ta có: \(\widehat{ACB}=\widehat{IAB}\) ( góc nội tiếp và góc tạo bởi tiếp tuyến cùng chắn cung AB )
Lại có: \(\widehat{ABD}=\widehat{IAB}\) ( so le trong )
⇒ \(\widehat{ABD}=\widehat{ACB}\)
Xét △ ABD và △ ACB có:
\(\widehat{ABD}=\widehat{ACB}\) ( cmt )
\(\widehat{A}\) chung
⇒ △ ABD ∼ △ ACB ( g - g )
Từ đó: \(\dfrac{AB}{AD}=\dfrac{AC}{AB}\Leftrightarrow AB^2=AC.AD\) ( đpcm )
c) Theo câu a, ta có: tam giác ABFE nội tiếp
⇒ \(\widehat{ABE}=\widehat{AFE}\) ( 2 góc nội tiếp cùng chắn cung AE )
Mà \(\widehat{ABE}=\widehat{ACB}\Rightarrow\widehat{AFE}=\widehat{ACB}\) (3)
Ta có: M là trung điểm của AB và N là trung điểm của BC
⇒ MN là đường trung bình △ ABC
⇒ MN // AC
⇒ \(\widehat{BMN}=\widehat{ACB}\) ( đồng vị ) (4)
Từ (3) và (4): \(\widehat{AFE}=\widehat{BNM}\)
Mà \(\widehat{AFE}+\widehat{NFE}=90^0\Rightarrow\widehat{BNM}+\widehat{NFE}=90^0\)
Gọi H là giao điểm của EF và MN
⇒ \(\widehat{FNH}=90^0\)
⇒ EF ⊥ MN ( đpcm )
a) Ta có: OA⊥d(gt)
d//d'(gt)
Do đó: OA⊥d'(Định lí 1 từ vuông góc tới song song)
hay AE⊥BE
Xét tứ giác ABFE có
\(\widehat{AFB}=\widehat{AEB}\left(=90^0\right)\)
\(\widehat{AFB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB
Do đó: ABFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)