cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
a, CM AD=HD
b, So sánh AD VÀ DC
c, CM TAM GIÁC ABC Cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
a)xét 2 tam giác vuông ABD và HBD có:
BD(chung)
ABD=CBD(gt)
suy ra tam giác ABD=HBD(CH-GN)
suy ra AD=DH
b)
ta có: tam giác HCD vuông tại H sủy a DC là cạnh lớn nhất trong tam giác đó
suy ra DC>DH mà DH=Ad suy ra AD<DC
a) Xét tam giác ABD và tam giác BDH có: góc B1= góc B2 (do BĐ là pg ABD)
BD cạnh chung
góc ABD= góc BHD( =90 độ)
=> tam giác ABD= tam giác BDH( g.c.g)
=> AD=DH( 2 cạnh tương ứng)
b) mk ki bt làm
c) Xét tam giác BHK vuông tại H có: góc B+ góc HKB= 90 độ( t/c)
Xét tam giác BAC có : góc B+ góc ACB= 90 độ( t/c)
=> góc HKB= góc ACB (cùng phụ vs góc B)
=> góc AKD = góc HCD
Xét tam giác ADK và tam giác HDC có:
góc AKD = góc HCD(cmt)
AD=DH( c/m câu a)
góc KAD= góc DHC( = 90 độ)
=> tam giác ADK= tam giác HDC( g.c.g)
=> AK=HC( 2 cạnh tương ứng)
Mà BA= BH( tam giác ABD= tam giác BDH)
BA+ AK= BK , BH+HC= BC
=> BK=BC
=> tam giác KBC cân tại B( đpcm)
a) Xét tam giacd ABD và tam giác HBD có :
góc ABD = góc HBD ( vì BD là tia phân giác )
BD : cạnh chung
Góc BAD = góc BHD = 90 độ
=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
=> AD = DH ( cặp cạnh tương ứng )
b) Xét tam giác HDC có :
góc DHC = 90 độ ( vì kề bù với góc BHD = 90 độ )
=> DC > DH ( vì DC là cạnh đối diện với góc vuông )
mà AD = DH ( câu a)
=> AD < DC ( đpcm )
c) Vì AB = BH ( vì tam giác ABD = tam giác HBD )
=> tam giác ABH cân
Xét tam giác ADK và tam giác HDC có
AD = DH ( vì tam fiacs ABD = tam giác HBD )
góc KAD = góc CHD = 90
Góc ADK = góc HDC ( đối đỉnh )
=> tam giác ADK = tam giác HDC ( g-c-g )
=> AK = HC ( cặp cạnh tương ứng )
mà AB + AK = BK
BH + CH = BD
Mà AB = BH (cmt )
=> BK = BC
=> tam giác KBC cân (đpcm )
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
Ta có hình vẽ sau: ( tự vẽ hình nha bạn)
a) Xét \(\Delta ABD\)và \(\Delta HBD\):
BD: cạnh chung
\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)
\(\widehat{BAD}=\widehat{BHD}=90^o\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
=> AD=HD( 2 cạnh tương ứng)
=> đpcm
b)Xét \(\Delta DHC\)vuông tại H có:
DC>HC
Mà HD=AD ( cm câu a)
=> DC> AD
c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)
Xét \(\Delta ADK\)và \(\Delta HDC:\)
AD=HD( cm câu a)
\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)
\(\widehat{DHK}=\widehat{DHC}=90^o\)
=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)
=> AK=HC ( 2 cạnh t/ứ)
Mà AB=BH( \(\Delta ABD=\Delta HBD\))
=> AB+AK=HC+BH
=> BK=BC
=> \(\Delta BKC\)cân tại B
=> đpcm
a) Xét tam giác ABD và tam giác HBD có :
BD chung
^ABD = ^HBD ( BD là phân giác của ^B )
=> Tam giác ABD = tam giác HBD ( ch - gn )
=> AD = HD ( hai cạnh tương ứng )
=> AB = AH ( _________________ )
b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )
^BHD + ^DHC = 1800 ( kề bù )
Mà ^BAD = ^BHD = 900
=> ^DAK = ^DHC = 900
Xét tam giác DAK và tam giác DHC có :
^DAK = ^DHC ( cmt )
DA = DH ( cmt )
^ADK = ^HDC ( đối đỉnh )
=> Tam giác DAK = tam giác DHC ( g.c.g )
=> AD = DC ( hai cạnh tương ứng )
=> AK = HC ( _________________ )
c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )
Ta có : BK = BA + AK
BC = BH + HC
Mà BA = BH , AK = HC ( cmt )
=> BK = BC
Xét tam giác KBC có BK = BC ( cmt )
=> Tam giác KBC cân tại B ( đpcm )