K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

Bài làm

Ta có: 3a3 + 3a2b + 3ab2 + 3b3 

= 3( a3 + a2b + ab2 + b3 )

= 3[ a2( a + b ) + b2( a + b ) ]

= 3( a2 + b2 )( a + b )

Ta có: ( a2 + b2 ) > 0 V a, b

=> ( a2 + b2 ) . 3 > 0

Mà 3( a2 + b )2( a + b ) > 0 ( đpcm ) 

2 tháng 5 2020

\(3a^3+3a^2b+3ab^2+3b^3>0\)

\(\Leftrightarrow3\left(a^3+a^2b+ab^2+b^3\right)>0\)

\(\Leftrightarrow3\left[a^2\left(a+b\right)+b^2\left(a+b\right)\right]>0\)

\(\Leftrightarrow3\left(a^2+b^2\right)\left(a+b\right)>0\)(đpcm)

26 tháng 9 2019

\(a^2-3ab+2b^2=0\)

\(\Leftrightarrow a^2-2ab-ab+2b^2=0\)

\(\Leftrightarrow a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=b\end{cases}}\)

+ ) TH1 :  

\(a=2b\)

\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)

\(P=\frac{2b+2b}{6b}+\frac{b+4b}{3b}\)

\(P=\frac{4b}{6b}+\frac{5b}{3b}\)

\(P=\frac{4}{6}+\frac{5}{3}=\frac{7}{3}\)

+ ) TH 2  \(a=b\)

\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)

\(P=\frac{3a}{3a}+\frac{3b}{3b}=1+1=2\)

Chúc bạn học tốt !!!

2 tháng 6 2019

4 tháng 9 2021
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật