từ điểm M thuộc đường thẳng (d) ở ngoài (O) sao cho khoảng cách từ điểm O đến (d) bằng h ko đổi kẻ hai tiếp tuyến MA,MC đến (O). Gọi K là giao điểm của OM, AB. Chứng minh AB đi qua điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM = O A 2 = R 2
b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM
c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là
A
O
M
^
=
60
0
. Sử dụng tỉ số lượng giác của góc
A
O
M
^
, tính được OM=2OA=2R, tức là M cách O một khoảng 2R
d, Kết hợp ý a) và b) => OK.OH =
R
2
=> OK =
R
2
O
H
Mà độ dài OH không đổi nên độ dài OK không đổi
Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi
a) Xét tứ giác OAMC có
\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc OAM+góc OCM=180 độ
=>OAMC nội tiếp
b: CE//BD
=>góc AKM=góc AEC=góc ACM
=>AKCM nội tiếp
=>A,K,C,M cùng nằm trên 1 đường tròn
=>góc OKM=90 độ
=>K là trung điểm của BD
Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^
Gọi H là hình chiếu của O đến đường thẳng d. Khi đó : OH = h không đổi
dễ chứng minh OM \(\perp AB\)tại K
gọi giao điểm của OH với AB là I
Ta có : \(\Delta OKI~\Delta OHM\left(g.g\right)\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OK.OM=OI.OH\)
Áp dụng hệ thức lượng, ta có :
\(OB^2=OK.OM=OH.OI\Rightarrow OI=\frac{OB^2}{OH}=\frac{R^2}{h}\)không đổi ( R là bán kính đường tròn (O) )
vậy AB đi qua điểm I cố định