K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

b: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=OA^2-AB^2

13 tháng 1 2022

a) Gọi I là trung điểm của OA, ta ngay lập tức có được \(IO=IA=\frac{OA}{2}\)và BI, CI lần lượt là các trung tuyến của các tam giác OAB và OAC

Vì AB là tiếp tuyến tại A của đường tròn (O) \(\Rightarrow AB\perp OB\)tại B \(\Rightarrow\Delta OAB\)vuông tại B

\(\Delta OAB\)vuông tại B có trung tuyến BI \(\Rightarrow IB=\frac{OA}{2}\)

Chứng minh tương tự, ta có: \(IC=\frac{OA}{2}\)

Như vậy ta có \(IO=IA=IB=IC\left(=\frac{OA}{2}\right)\)

Vậy 4 điểm A, B, O, C cùng nằm trên đường tròn có tâm I, đường kính là OA.

b) Nhận thấy \(OB=OC\)(cùng bằng bán kính của (O)) 

\(\Rightarrow\)O nằm trên đường trung trực của BC. (1)

Xét đường tròn (O) có 2 tiếp tuyến tại B và C cắt nhau tại A \(\Rightarrow AB=AC\)(tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\)A nằm trên đường trung trực của BC. (2)

Từ (1) và (2) \(\Rightarrow\)OA là trung trực của BC \(\Rightarrow OA\perp BC\left(đpcm\right)\)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

20 tháng 9 2021
Tui ko bt lm đâu há há
15 tháng 12 2017

O' O B C K Y A

a) Ta thấy ngay AY chính là tiếp tuyến chung của hai đường tròn (O) và (O')

Theo tính chất hai tiếp tuyến cắt nhau, ta có YB = YA = YC

Vậy nên tam giác BAC vuông tại A hay \(\widehat{BAC}=90^o\)

b) Theo tính chất hai tiếp tuyến cắt nhau ta có \(\widehat{AYO}=\widehat{OYB};\widehat{AYO'}=\widehat{O'YC}\)

\(\Rightarrow\widehat{OYO'}=\widehat{OYA}+\widehat{AYO'}=90^o\)

Xét tam giác vuông OYO' có YK là trung tuyến ứng với cạnh huyền nên \(KY=\frac{OO'}{2}\)

c) Ta thấy ngay BOO'C là hình thang vuông có Y là trung điểm BC, K là trung điểm OO' nên KY là đường trung bình của hình thang.

Vậy thì KY // OB // O'C

Từ đó ta có ngay KY vuông góc BC.

Lại có \(KY=KO\)

Nên BC là tiếp tuyến của đường tròn tâm K, bán kính KO.