Cho số 8ab8 (có gạch ngang trên đầu), chứng minh rằng hiệu của số này với số được viết theo thứ tự bởi các chữ số này nhưng theo thứ tự ngược lại thì chia hết cho 90.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 2
Khong mat tinh tong quat, gia su a lon hon hoac bang b
1ab1 - 1ba1 = 1000 + 100a + 10b +1 - 1000 - 100b - 10a -1
=90 (a-b) chia het cho 9
Không mất tính tổng quát, giả sử a>hơn hoặc=b ta có:
1ab1-1ba1=1000+100a+10b+1-1000-100b-10a-1=90(a-b) chia hết cho 90
dễ mà
1ab1 đảo ngược lại ta có số 1ba1
ta có : 1ab1 - 1ba1 =....0 ( vì hàng đơn vị của 2 số đều là 1 , 1-1=0 )
các số có tận cùng =0 thì chi hết cho 10
suy ra hiệu 1ab1 - 1ba1 chia hết cho 10
@@@( mk chỉ biết lý thuyết thôi , sai trình bày đừng ném đá )@@@
a)
Gọi số tự nhiên có 3 chữ số giống nhau là bbb (b khác 0; b< 10)
Ta có:
bbb = b . 111 = b . 37 .3
=> b chia hết cho 37
Vậy mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37
b)
Ta có
1ab1 = 1000 + a .100 + b .10 + 1
1ba1 = 1000+ b .100 +a .10 +1
1ab1-1ba1 = 1000 + a .100 + b .10 + 1 - 1000 + b.100 + a .10 + 1
1ab1-1ba1 = 1001+a .100+ b.10 - 1001 + b .100 + a .10
1ab1 -1ba1 = a .100+ b.10 - b .100+ a.10
1ab1 -1ba1 = a.(100- 10) - b .( 100-10)
1ab1 - 1ba1 = a .90 - b .90
1ab1-1ba1 = 90(a-b)
=> 1ab1 -1ba1 chia hết cho 90
Vậy hiệu giữa số có dạng 1ab1 và số được viết bởi chính các chữ số đó nhưng theo thứ tự ngược lại thì chia hết cho 90
Gọi số đó là ab (có gạch trên đầu)
=>số đó viết theo thứ tự ngược lại là ba (có gạch trên đầu)
ta có hiệu hai số đó là:
ab - ba
= ( 10a + b) - (10b + a)
=10a + b - 10b - a
= 9a - 9b
= 9.(a-b) chia hết cho 9
=> đpcm
K mình nha
Ta co:
1ab1−1ba1=1000+a.100+b.10+1−1000−b.100−a.10−1=90a−90b=90(a−b)
Vì 90(a-b) chia hết cho 90 nên ....(dpcm)
không mất tính tổng quát,giả sử:\(a\ge b\) ta có:
\(1ab1-1ba1=1000+100a+10b+1-1000-100b-10a-1=90\left(a-b\right)⋮90\)
\(\overline{8ab8}-\overline{8ba8}\\ =8000+100a+10b+8-8000-100b-10a-8\\ =90a-90b=90\left(a-b\right)⋮90\)