Tam giác ABC, trung tuyến BM.Trên BM lấy điểm G sao cho GM=1/2GB.Trên tia đối MB lấy điểm Đ sao cho G trung điểm của BD.Gọi E là trung điểm của CD và I là giao điểm của GE và CM ,chứng minh rằng I là trọng tâm của tam giác GCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì GM = 1/2 GB (gt)
Mà GB = GD ( G là trung điểm của BD ) nên GM = 1/2 GD
Và M là trung điểm của GD nên CM là đường trung tuyến
Ta có 2 trung tuyến CM và GE cắt nhau tại I nên I là trọng tâm của tam giác CGD
a: Xét ΔADM và ΔCBM có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔADM=ΔCBM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
hay CD\(\perp\)AC
1:
Xét ΔBAC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
BG+CG>BC
=>2/3BM+2/3CN>BC
=>2/3(BM+CN)>BC
=>BM+CN>3/2BC
2:
BF=2BE
=>EF=BE
=>EF=2ED
=>D là trung điểm của EF
Xét ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: G là trọng tâm của ΔFEC
=>GE/GK=1/2 và GC/DC=2