Cho đường tròn (O) và đường kính AB =2R . Trên tia đối của tia BA lấy điểm C sao cho BC=R . Lấy điểm D thuộc đường trond (O) sao cho BD =R . Đường thẳng vuông góc với AC tại C cắt AD tại N
a, Cm tứ giác BCND nội tiếp
b, Cm tam giác ABN cân
c, Tính AD.AN theo R
a) \(\widehat{BDA}=90^o\)(góc nội tiếp chắn nửa đường tròn)
=>\(\widehat{BDM}=90^o;\widehat{MCB}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{BDM}+\widehat{MCB}=90^o+90^o=180^o\)
=> tứ giác BCMD nội tiếp (tứ giác có 2 góc đối bằng 180o)
b) \(\sin\widehat{BAD}=\frac{BD}{AB}=\frac{R}{2R}=\frac{1}{2}=\sin30^o\Rightarrow\widehat{BAD}=30^o\)
\(AD=AB.\cos\widehat{BAD}=2R.\cos30^o=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}\)
Xét \(\Delta\)CMA có: \(\widehat{C}=90^o\), AC=AB+CB=3R có AC=MAcosA
=> \(MA=\frac{AC}{\cos30^o}=\frac{3R}{\frac{\sqrt{3}}{2}}=2\sqrt{3}R\)
=> MD=MA-AD=\(2\sqrt{3}R-\sqrt{3}R=\sqrt{3}R\)
=> AD=MD=\(R\sqrt{3}\)=> D là trung điểm MA
=> \(\Delta\)MBA cân tại B (vì BD vừa là đường cao vừa là đường trung tuyến)
c) MA.AD=\(\left(2\sqrt{3}R\right)\cdot R\sqrt{3}=6R^2\)