K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

Giúp mình nhanh nhé

24 tháng 4 2020

UhkbijhihguhftfWegvhhhhvhiggyghkbhijmkjiphfuhfygggubh

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
9 tháng 4 2021

A = 100* => B^ = C^ = 40* 
trên CA lấy điểm E sao cho CB = CE 
C^ = 40* và MCB^ = 20* => MCB^ = MCE^ = 20* 
=> ΔCBM = Δ CEM ( c.g.c) => MEC^ = MBC^ = 10* 
BCE^ = 40* và Δ BCE cân tại C => CEB^ = (180* - 40*)/2 = 70* 
=>MEB^ = 60* (1) 
ΔCBM = Δ CEM => MB = ME (2) 
(1) và (2) => BME là tam giác đều MB = BE (1*) 
ABC^ = 40* ; MBC^ = 10* => ABM^ = 30* 
ABE^ = CBE^ - ABC^ = 70* - 40* = 30* 
=> ABM^ = ABE^ (2*) 
(1*) và (2*) => ΔABM = Δ ABE (vì có thêm AB là cạnh chung) 
=> AMB^ = AEB^ = 70*

20 tháng 3 2019

Mình cần gấp

20 tháng 3 2019

giống anh sắp thi rùi

19 tháng 8 2019

a)Nối AD,AE.Ta có :

AD = AH vì nằm trên đường trung tuyến của DH

AE = AH vì nằm trên đường trung tuyến của EH 

=> AD = AE hay tam giác ADE cân

Xét \(\Delta ADB\)và \(\Delta AHB\)

+ AB chung 

+ AD = AH

+\(\widehat{DAB}=\widehat{HAB}\)

\(\Rightarrow\Delta ADB=\Delta AHB\left(c.g.c\right)\)

\(\Rightarrow\widehat{ADB}=\widehat{AHB}=90^0\)

Chứng minh tương tự ta được tam giác AEC vuông tại E

Suy ra \(90^0-\widehat{ADE}=90^0-\widehat{AED}\Leftrightarrow\widehat{IDB}=\widehat{KEC}\)

Mà \(\widehat{IDB}=\widehat{IHB};\widehat{KEC}=\widehat{KHC}\)

\(\Rightarrow\widehat{IHB}=\widehat{KHC}\)

Kéo dài IH về phía H.Lấy điểm S bất kì thuộc tia đối của IH

Xét tam giác IKH có KC là tia phân giác của góc ngoài HKE và HC là tia phân giác góc ngoài KHS

Chứng minh HC là phân giác của góc KHS

Ta có \(\widehat{IHB}=\widehat{CHS}=\widehat{KHC}\)(đối đỉnh)

\(\Rightarrow\widehat{KHC}=\widehat{CHS}\)

Vậy hai tia phân giác của hai góc ngoài của tam giác IKH cắt nhau tại .Suy ra IC là tia phân giác của góc KIH

b) Ta có IB là phân giác của góc DIH

IC là phân giác của góc HIK

Mà hai góc trên kề bù 

=> IB và IC vuông góc với nhau 

(Hình bạn lên mạng tra theo đề là ra nhiều lắm nhé mình ko biết vẽ hình trên OLM bạn thông cảm)