Cho tam giác cân ABC (AB=AC) P là điểm trên cạnh đáy BC . Kẻ các đường thẳng PE,PD lần lượt song song với AB,AC( E thuộc AC,D thuộc AB) gọi Q là điểm đối xứng với P qua DE . Chứng minh bốn điểm Q,A,B,C cùng thuộc một đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$PM\parallel AC$ nên $\widehat{PMB}=\widehat{ACB}$
Mà $\widehat{ACB}=\widehat{ABC}=\widehat{PBM}$ do tam giác $ABC$ cân nên $\widehat{PMB}=\widehat{PBM}$
$\Rightarrow \triangle PBM$ cân tại $P$
$\Rightarrow PB=PM$
Mà $PM=PD$ do tính đối xứng
$\Rightarrow PB=PM=PD$ nên $P$ là tâm đường tròn ngoại tiếp $(DBM)$
$\Rightarrow \widehat{BDM}=\frac{1}{2}\widehat{BPM}$ (tính chất góc nt và góc ở tâm cùng chắn 1 cung)
$=\frac{1}{2}\widehat{BAC}$
Tương tự, $Q$ cũng là tâm ngoại tiếp $(DCM)$
$\Rightarrow \widehat{MDC}=\frac{1}{2}\widehat{MQC}=\frac{1}{2}\widehat{BAC}$
Như vậy:
$\widehat{BDC}=\widehat{BDM}+\widehat{MDC}=\widehat{BAC}$
Kéo theo $D\in (ABC)$
Ta có đpcm.
a: Xét tứ giác AMBN có
Q là trung điểm của AB
Q là trung điểm của MN
Do đó: AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi