mình cần gấpppppppppppppppppppp (Vẽ hình)
Bài 4. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K
là điểm đối xứng của điểm M qua điểm I.
a) Tứ giác AMCK là hình gì? Vì sao?
b) Tứ giác AKMB là hình gì? Vì sao?
c) Qua C kẻ đường thẳng d song song với AB, cắt AK kéo dài tại HE, chứng minh ba
đường thẳng AC, BE, MK đồng qui.
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a, Vì I là trung điểm MK và AC nên AMCK là hbh
Mà AM là tt nên cx là đường cao
Do đó AM⊥MN nên AMCK là hcn
b, Vì AMCK là hcn nên AK//CM hay AK//MB và AK=CM=BM(do AM là tt)
Do đó AKMB là hbh