Cho tam giác MND cân tại M. TRên tia đối của tia DN lấy điểm A, trên tia đối của tia ND lấy điểm B sao cho DA=NB
a, Chứng minh tam giác MAB cân
b, Kẻ DH vuông góc MA (H thuộc MA) và NK vuông góc MB ( K thuộc MB ). Chứng minh rằng DH = NK.
c, Chứng minh MH=MK
d, Gọi I là giao điểm của DH và NK . Tam giác IDN là tam giác gì ?
e,Nếu DMN=60 độ và DA=DN=NB. Hãy tính số đo của tam giác MAB và xác định dạng của tam giác IDN
hình của mjnh thiếu điểm H và K rồi bạn tự thêm vào đi
a, tam giác MND cân tại M (gt)
=> ^MND = ^MDN (tc)
^MND + ^MNB = 180 (kb)
^MDN + ^MDA = 180 (kb)
=> ^MNB = ^MDA
xét tam giác MNB và tam giác MDA có BN = DA (gt)
MN = MD do tam giác MND cân tại M (gt)
=> tg MNB = tg MDA (c-g-c)
=> MA = MB (đn)
=> tg MAB cân tại M (Đn)
b, xét tam giác DHA và tam giác NKB có : AD = BN (gt)
^AHD = ^BKN = 90
^A = ^B do tam giác MAB cân tại M (câu a)
=> tg DHA = tg NKB (ch-gn)
=> DH = KN (đn)
c, tg DHA = tg NKB (câu b)
=> AH = KB (đn)
có MA = MB (câu a)
AH + MH = AM
MK + KB = BM
=> MH = MK
d, có ^HDA = ^KNB do tg DHA = tg NKB (Câu b)
^HDA = ^NDI (đối đỉnh)
^KNB = ^DNI (đối đỉnh)
=> ^NDI = ^DNI
=> tam giác DNI cân tại I