cho tam giác ABC có AB=AC gọi M là trung điểm của BC
a Chứng minh tam giác AMB=tam giác AMC
b.Chứng minh rằng AM là tia phân giác của góc BAC
c Chứng minh AM vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
`a)`
Xét `Delta ABM` và `Delta ACM` có :
`{:(AB=AC(GT)),(AM-chung),(BM=CM(M là tđ BC)):}}`
`=>Delta ABM=Delta ACM(c.c.c)(đpcm)`
`b)`
`Delta ABM=Delta ACM(cmt)=>hat(A_1)=hat(A_2)`
mà `AM` nằm giữa `AB` và `AC`
nên `AM` là p/g của `hat(BAC)(đpcm)`
`c)`
Xét `Delta ADM` và `Delta AEM` có :
`{:(hat(ADM)=hat(AEM)(=90^)),(AM-chung),(hat(A_1)=hat(A_2)(cmt)):}}`
`=>Delta ADM=Delta AEM(ch-gn)`
`=>AD=AE` ( 2 cạnh t/ứng )
`=>Delta ADE` cân tại `A(đpcm)`
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
A)Xét tam giác AMB và tam giác ABC có
BM=MC (gt)
AB=AC (gt)
AM là cạnh chung
Vậy tam giác AMB =tam giác MAC(c.c.c)
Vì tam giác AMB = tam giác AMC
Suy ra góc AMB=góc AMC
TA có góc AMB+góc AMC = 180 độ (2 góc kề bù)
Suy ra góc AMB= góc AMC=90 độ
Suy ra Am vuông góc với BC
\(a,\) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
\(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\\BM=MC\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(b,\) Vì \(\Delta ABC\) cân tại \(A\)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
a) tam giác AMB và AMC có :
AM là cạnh chung
AB=AC(giả thiết)
MB=MC( M trung điểm của BC)
=>tam giác AMB=AMC(c-c-c)
b) tam giác AMB =AMC(cm trên)
=> góc BAM = CAM (hai góc tương ứng)
mà AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c)tam giác AMB = AMC (cm trên)
=> góc AMB = AMC( 2 góc tương ứng)
mà góc AMB+AMC=180o
=> góc AMB=AMC=180/2=90o
=> AM vuông góc với BC
nhớ vẽ hình
tick nha