Chứng minh rằng các tổng sau không phải số tự nhiên:
a) S1= 1/2+1/3+1/4
b) S2= 1/2+1/3+1/4+...+1/8
c) S3= 1/2+1/3+...+1/16
d) S4= 3/10+3/11+..+3/14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhóm thứ nhất có 1 số, nhóm thứ 2 có 2 số, nhóm thứ 3 có 3 số,..... cứ như thế đến trước nhóm thứ 100 thì có
1+2+3+...+99=4950 ( số)
Vậy số đầu tiên của nhóm thứ 100 là số thứ 4951 hay chính là số 4951
Số hạng cuối cùng của nhóm thứ 100 là 4951+(100-1)=5050
=>S100=(5050+4951).100:2=500050
Sn có (n+1) số hạng trong tổng các số vậy ví dụ như S100 có 101 số số hạng
Xét dãy số:2,3,4....101
2+3+4+.....+101=(101+2).100:2=5150 là tổng các số hạng của S1,S2....,S100.
Dãy1,2,3....,5150 và rõ ràng số thứ hạng 5150 là 5150 nên ta có số hạng cuối cùng trong S100 là 5150
=> S100=5050+5051+.....+5150(có 101 số số hạng).
S100=(5050+5150).101:2=515100
Vậy S100 = 515100
Công thức:
Số các số hạng là:
(số cuối-số đầu):khoảng cách+1=số hạng
tổng:(số cuối+số đầu)x số hạng:2=k quả