Cho A=\(\frac{\sqrt{x+1}}{\sqrt{x-3}}\)tìm số nguyên x để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A \(\in\)Z <=> 4 \(⋮\)\(\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
<=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
Do \(\sqrt{x}\ge0\) => \(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)
=> \(x\in\left\{16;4;25;1;49\right\}\)
Vậy ...
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1\)\(+\frac{4}{\sqrt{x}-3}\)
ĐKXĐ: \(x\in R\)
Vì \(x\in Z \Rightarrow \sqrt{x}-3\in Z\)
Để A là một số nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)
<=> \(4⋮\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1,2,4,-1,-2,-4\right\}\)mà \(\sqrt{x}-3\ge-3\forall x\)
<=>\(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)
<=> \(x\in\left\{16;25;49;4;1\right\}\)
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
P = AB = \(\frac{3\sqrt{x}}{\sqrt{x}+1}\)= 3 - \(\frac{3}{\sqrt{x}+1}\)
Để P nguyên thì \(1+\sqrt{x}\)phải là ước của 3 hay \(1+\sqrt{x}\)= (1;3)
Thế vào giải ra
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
\(A=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{1}{\sqrt{x}-2}\)
vậy \(A=\frac{1}{\sqrt{x}-2}\)
A có nghĩa khi \(\sqrt{x}-2>0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
vậy \(x=4\) thì A có nghĩa
b) theo ý a) \(A=\frac{1}{\sqrt{x}-2}\)
theo bài ra \(A>2\) \(\Leftrightarrow\frac{1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}-2>0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{1-2\sqrt{x}+4}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
\(\Rightarrow\hept{\begin{cases}5-2\sqrt{x}>0\\\sqrt{x}-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}5-2\sqrt{x}< 0\\\sqrt{x}-2< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-2\sqrt{x}>-5\\\sqrt{x}>2\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}< -5\\\sqrt{x}< 2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{25}{4}\\x>4\end{cases}}\)hoặc \(\hept{\begin{cases}x>\frac{25}{4}\\x< 4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\notin\varnothing\end{cases}}\)
vậy \(4< x< \frac{25}{4}\) thì \(A>2\)