Cho nửa đường tròn tâm (O), đường kính AB cố định và một điểm Q cố định thuộc đoạn OB ( Q khác O, B). C là điểm chuyển động trên nửa đường tròn sao cho AC < CB ( C khác A) . Qua Q kẻ đường thẳng vuông góc với AB, cắt đoạn thảng CB tại H, cắt AC tại E.. Kéo dài AH cắt nửa đường tròn tại D
a, CM: tứ giác ACHQ và tứ giác BDHQ nội tiếp
b, CM: AH.AD + BH.BC không đổi khi C chuyển động trên nửa đường tròn
c, Kẻ tiếp tuyến tại C cắt HQ tại I. OI cắt CD tại K. CMR : OI.OK = R^2 và đường thẳng CD luôn đi qua một điểm cố định
d, CM tâm đường tròn ngoại tiếp tam giác AHE thuộc một đường thẳng cố định