Tìm các số nguyến a để a^4 - a^3 + 2*a^2 là số chính phương
Giải chi tiết nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
Có : 2A = 23 + 24 + 25 + .... + 22019
=> 2A - A = 22019 - 22
=> A = 22019 - 4
=> A + 4 = 22019 ko phải là số chính phương
Vậy ...........
Tham khảo nak
Có : \(A=2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A=2^3+2^4+2^5+...+2^{2019}\)
\(\Rightarrow2A-A=2^3+...+2^{2019}-2^2-2^3-...-2^{2018}\)
\(\Rightarrow A=2^{2019}-2^2\)
\(\Rightarrow A=2^{2019}-4\)
\(\Rightarrow A+4=2^{2019}\)ko phải là scp
Vậy ..............
1.
bạn xem lại đề nhé: nếu đúng thì mình nhẩm được n = 0
2.
X = 2/a để X thuộc N thì a phải thuộc N và là ước của 2
ước tự nhiên của của 2 = { 1; 2}
Vậy a = 1 hoặc a = 2
3.
Y = -3/a để Y là số âm thì a phải là một số dương (khác 0)
4. \(Z=\frac{a-3}{2}\) đê Z âm thì tử là a - 3 phải âm vì mẫu là một số dương
\(a-3\le0\Rightarrow a\le3\)
5
.\(T=\frac{a+1}{a-2}\) để T dương thì tử và mẫu phải cùng dấu
TH1: a+1 < 0 => a < -1
a-2 < 0 => a < 2
=====> a <-1
TH2:
a+1 > 0 => a > -1
a-2 > 0 => a > 2
=====> a > 2
vậy a < -1 hoặc a > 2 thì T là một số dương