cho tam giác ABCABC nhọn, các đường cao AD,BE,CFAD,BE,CF cắt nhau tại HH.
Chứng minh rằng: \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có \(\frac{S_{HBC}}{S_{ABC}}=\frac{\frac{1}{2}HD.BC}{\frac{1}{2}AD.BC}=\frac{HD}{AD}\)
tương tự \(\frac{S_{HAC}}{S_{ABC}}=\frac{HE}{BE};\frac{S_{HAB}}{S_{ABC}}=\frac{HF}{CF}\)
\(\Rightarrow\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=\frac{S_{HBC}+S_{HAC}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\left(ĐPCM\right)\)
b, bổ sung đề rồi mình làm tiếp cho ạ
Câu b) em có cách này cô ạ, cô check giùm em xem có đúng không ạ :
Ta có : \(\frac{HA}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABC}}\)
( Tính chất dãy tỉ số bằng nhau )
Tương tự ta có :
\(\frac{HB}{BE}=\frac{S_{AHB}+S_{BHC}}{S_{ABC}}\), \(\frac{HC}{CF}=\frac{S_{AHC}+S_{BHC}}{S_{ABC}}\)
Khi đó : \(\frac{HA}{AD}+\frac{HB}{BE}+\frac{HC}{CF}=\frac{2\left(S_{ABH}+S_{AHC}+S_{BHC}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\)
Vậy : \(\frac{HA}{AD}+\frac{HB}{BE}+\frac{HC}{CF}=2\)
Date cái hình ra đây đã, bài này "dễ" không ấy mà:))
Bài làm:
Ta có:
\(S_{AHB}=\frac{1}{2}\cdot AH\cdot BD\) , mà \(\sin\widehat{BHD}\cdot BH=\frac{BD}{BH}\cdot BH=BD\)
=> \(S_{AHB}=\frac{1}{2}\cdot AH\cdot BH\cdot\sin\widehat{BHD}\left(1\right)\)
\(S_{ABC}=\frac{1}{2}\cdot AC\cdot BE\) , mà \(\sin\widehat{ECB}\cdot BC=\frac{BE}{BC}\cdot BC=BE\)
=> \(S_{ABC}=\frac{1}{2}\cdot AC\cdot BC\cdot\sin\widehat{ECB}\left(2\right)\)
Dễ dàng CM được: Δ BDH ~ Δ BEC (g.g) => \(\widehat{BHD}=\widehat{ECB}\Rightarrow\sin\widehat{BHD}=\sin\widehat{ECB}\)
Chia vế (1) cho (2) ta được:
=> \(\frac{S_{AHB}}{S_{ABC}}=\frac{AH\cdot BH}{BC\cdot AC}=\frac{AH}{BC}\cdot\frac{BH}{AC}\)
Tương tự ta CM được: \(\frac{S_{CHA}}{S_{ABC}}=\frac{CH}{AB}\cdot\frac{AH}{BC}\) và \(\frac{S_{BHC}}{S_{ABC}}=\frac{BH}{AC}\cdot\frac{CH}{AB}\)
Cộng vế 3 BĐT trên lại ta được: \(\frac{S_{AHB}+S_{AHC}+S_{BHC}}{S_{ABC}}=\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{AC}\cdot\frac{CH}{AB}\)
=> \(\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{AC}\cdot\frac{CH}{AB}=\frac{S_{ABC}}{S_{ABC}}=1\)
Tiếp theo ta CM bất đẳng thức phụ: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\) (nhân 2 vào cả 2 vế)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\forall a,b,c\right)\) luôn đúng
Dấu "=" xảy ra khi: \(a=b=c\)
Từ đó ta áp dụng vào CM bài toán:
\(\left(\frac{AH}{BC}+\frac{BH}{CA}+\frac{CH}{AB}\right)^2\ge3\left(\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{CA}\cdot\frac{CH}{AB}\right)=3\cdot1=3\)
\(\Rightarrow\frac{AH}{BC}+\frac{BH}{CA}+\frac{CH}{AB}\ge\sqrt{3}\)
Dấu "=" xảy ra khi: \(\frac{AH}{BC}=\frac{BH}{CA}=\frac{CH}{AB}\Rightarrow AH=BH=CH\)
=> Tam giác ABC đều
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại link trên nhé!