Cho ΔABC, kẻ AH⊥BC tại H. CM rằng: AH<1/2(AB+AC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b)
Ta có: ΔAHB=ΔAHC(cmt)
nên HB=HC(hai cạnh tương ứng)
mà B,H,C thẳng hàng(gt)
nên H là trung điểm của BC
Xét ΔABC có
H là trung điểm của BC(cmt)
HD//AC(gt)
Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Ta có: ΔAHB vuông tại H(gt)
mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên HD=AD
Xét ΔADH có HD=AD(cmt)
nên ΔADH cân tại D(Định nghĩa tam giác cân)
a: ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
=>HB=HC
b: HB=HC=6/2=3cm
=>AH=căn 5^2-3^2=4cm
c: G là trọng tâm của ΔABC
=>AG là trung tuyến ứng với cạnh BC trongΔABC
=>A,G,H thẳng hàng
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Vậy ...
a: Xét ΔBHA vuông tại H có
\(BA^2=BH^2+HA^2\)
hay AH=3(cm)
b: Xét ΔABH vuông tại H và ΔCBH vuông tại H có
BA=BC
BH chung
Do đó: ΔABH=ΔCBH
c: Xét ΔBIH vuông tại I và ΔBKH vuông tại K có
BH chung
\(\widehat{IBH}=\widehat{KBH}\)
Do đó: ΔBIH=ΔBKH
Suy ra: HI=HK
d: Xét ΔBAC có BI/BA=BK/BC
Do đó: IK//AC
a: Xét ΔCBA vuông tại A và ΔCDA vuông tại A có
AB=AD
AC chung
DO đó: ΔCBA=ΔCDA
Suy ra: \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phan giác của góc BCD
b: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có
CA chung
\(\widehat{HCA}=\widehat{KCA}\)
Do đó: ΔCHA=ΔCKA
Suy ra: CH=CK
c: Xét ΔCDB có
CH/CD=CK/CB
DO đó; HK//DB
help me!!!!!!!!!!!!!!