tìm giá trị nhỏ nhất của x^2-3 trên x^2 +1 sory mình ko biết đánh gạch phân số mong các bạn giúp mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\right)+-\frac{1}{2}=\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\)\(-\frac{1}{2}\)
=\(\frac{6}{30}+\frac{10}{30}+\frac{9}{30}-\frac{15}{30}=\frac{6+10+9-15}{30}=\frac{10}{30}=\frac{1}{3}\)
Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)
\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)
Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(P\ge!x-3!+x^2+1\ge!x^2-x+3!+1\ge!\left(x-\frac{1}{2}\right)^2+\frac{3}{4}!+1\ge\frac{7}{4}\)
Đẳng thức khi y=0 ; x=1/2
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)
Dấu '=' xảy ra khi x=1/2
\(a,A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-2018\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-2018\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)-2018=a^2-2054\)
\(\Rightarrow A_{min}=2054\Leftrightarrow a=0\)
\(\Rightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x\in\left\{0;-5\right\}\)
\(b,B=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2018.\)
\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2018\)
Đặt \(x^2-9x+14=a\)
\(\Rightarrow B=\left(a-6\right)\left(a+6\right)+2018\)
\(=a^2-36+2018=a^2+1982\)
\(\Rightarrow B_{min}=1982\Leftrightarrow a^2=0\Rightarrow a=0\)
\(\Rightarrow x^2-9x+14=0\)
\(\Rightarrow x^2-2x-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x-7\right)=0\)
\(\Rightarrow x\in\left\{2;7\right\}\)
\(A=\left(x+2\right)^2+\left|x+2\right|+15\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
\(\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)
\(\Rightarrow A\ge15\)Dấu bằng xảy ra.
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(minA=15\Leftrightarrow x=-2\)
Tìm GTNN của: \(\frac{x^2-3}{x^2+1}\)
Ta có: \(\frac{x^2-3}{x^2+1}=\frac{x^2+1-4}{x^2+1}=1-\frac{4}{x^2+1}\)
Có: \(x^2+1\ge1\)=> \(\frac{4}{x^2+1}\le\frac{4}{1}=4\) => \(1-\frac{4}{x^2+1}\ge1-4=-3\)
=> \(\frac{x^2-3}{x^2+1}\ge-3\)
Dấu "=" xảy ra <=> x ^2 + 1 = 1 <=> x^2 = 0 <=> x = 0
Vậy GTNN của \(\frac{x^2-3}{x^2+1}\)là -3 tại x = 0