K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

bài này thầy hạnh dạy rồi mà

15 tháng 11 2015

254

Tick ủng hộ nhé !!!

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Lời giải:
\(S=1.1!+2.2!+3.3!+...+n.n!\)

\(=(2-1).1!+(3-1).2!+(4-1).3!+...+(n+1-1).n!\)

\(=2.1!-1!+3.2!-2!+4.3!-3!+...+(n+1)n!-n!\)

\(=2!-1!+3!-2!+4!-3!+....+(n+1)!-n!\)

\(=(2!+3!+...+(n+1)!)-(1!+2!+....+n!)\)

\(=(n+1)!-1\)

20 tháng 9 2019

Với n=1 (tính tay ra) đúng 
Với n=2 (tính tay ra) đúng 
Với n=3 (tính tay ra) đúng. 
Giả sử phương trình trên đúng với n=k, nếu nó cũng đúng với n=k+1 thì phương trình đúng. 
1.1! + 2.2!+...+k*k!=(k+1)!-1 (theo giả thiết trên). 
Phải chứng minh:1.1! + 2.2!+...+k*k! + (k+1)*(k+1)!=(k+1+1)!-1 
<=> (k+1)!-1+(k+1)*(k+1)!=(k+2)!-1 
<=> (k+1)! + (k+1)*(k+1)!=(k+2)! 
<=>(k+1)!*(1+k+1)=(k+2)! 
<=>(k+2)!=(k+2)! Điều này luôn đúng. 
Vậy đẳng thức đã được chứng minh.