K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

A B C K M O E H P

21 tháng 4 2020

a ) a.Vì P∈Trung trực của BC

\(\Rightarrow PB=PC\)

Ta có : AP là phân giác \(\widehat{BAC},PH\perp AB,PK\perp AC\Rightarrow PH=PK\)

Mà \(\widehat{PHB}=\widehat{PKC}=90^0\)

\(\Rightarrow\Delta PBH=\Delta PCK\) (cạnh huyền-cạnh góc vuông)

\(\Rightarrow BH=CK\)

b ) Ta có : \(PH=PK,\widehat{PHA}=\widehat{PKA}=90^0\)

\(\Rightarrow\Delta PHA=\Delta PKA\)(cạnh huyền-cạnh góc vuông)

\(\Rightarrow AH=AK\)

\(\Rightarrow\Delta AHK\) cân tại A 

Mà AP là phân giác ^A 

\(\Rightarrow AP\perp HK\)

Qua B kẻ BE // AK , \(E\in HK\)

\(\Rightarrow\widehat{BEH}=\widehat{AKH}\)

Do \(\Delta AHK\) cân tại A \(\Rightarrow\widehat{AKH}=\widehat{AHK}\)

\(\Rightarrow\widehat{BEH}=\widehat{BHE}\Rightarrow BH=BE\)

Mà \(BH=CK\Rightarrow BE=CK\)

Lại có BE // CK => \(\widehat{EBM}=\widehat{MCK}\)

Do M là trung điểm BC \(\Rightarrow MB=MC\Rightarrow\Delta EBM=\Delta KCM\left(c.g.c\right)\)

\(\Rightarrow\widehat{BME}=\widehat{KMC}\)

\(\Rightarrow\widehat{EMK}=\widehat{BME}+\widehat{BMK}=\widehat{CMK}+\widehat{BMK}=\widehat{BMC}=180^0\)

\(\Rightarrow E,M,K\) thẳng hàng 

\(\Rightarrow H,M,K\) thẳng hàng vì E , H , K thẳng hàng 

c ) Do \(PA\perp HK\) ( câu a ) 

\(\Rightarrow AP\perp HK=O\)

Kết hợp AH = AK \(\Rightarrow O\) là trung điểm HK

\(\Rightarrow OH=OK\)

\(\Rightarrow OA^2+OP^2+OH^2+OK^2=OA^2+OP^2+OH^2+OH^2\)

                                                                 \(=\left(OA^2+OH^2\right)+\left(OP^2+OH^2\right)\)

                                                                    \(=AH^2+PH^2\)

                                                                    \(=AP^2,\left(PH\perp AB\right)\)

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

=>BD=CE

1 tháng 3 2015

a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G

=>AG vuông góc với DG => AG vuông góc với EF

-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)

=>góc AFE = góc AEF 

-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)

 

b) Xét tam giác CFD và tam giác MBD:

+) FDC = MDB (đối đỉnh)

+) CD=BD (D là trung điểm BC)

+) FCD = DBM ( so le trong - BM //AC)

=> tam giác CFD = tam giác MBD

=> CF = BM ( hai cạnh tương ứng)

- tam giác BME cân tại B (cmt) => BM=BE

=> CF=BE

 

c)-DO là đường trung trực của cạnh BC => BO=CO

-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO

-Xét tam giác OCF và tam giác OBE:

+) BO=CO (cmt)

+) FO=EO (cmt)

+) CF=BE (cmt)

=> tam giác OCF=tam giác OBE (đpcm)

8 tháng 5 2016

Gọi H là giao điểm của CF vs AB, K là trung điểm AH => DK//GH => KH/BH = DG/BG (1) 
Mặt khác dễ thấy tg BCH cân tại B => BH = CB và theo tính chất phân giác ta có: 
AE/CE = AB/CB = (AH + BH)/BH = AH/BH + 1 <=> AH/BH = AE/CE - 1 = (AE - CE)/CE = ((AD + DE) - (CD - DE))/CE = 2DE/CE (vì AD = CD) 
<=> 2KH/BH = 2DE/CE <=> KH/BH = DE/CE (2) 
Từ (1) và (2) => DE/CE = DG/BG => EG//BC mà DF//AB (do D; F là trung điểm của AC;CH) => DF đi qua trung điểm của BC => DF đi qua trung điểm EG (Ta lét(