Cho các số thực dương a,b,c thỏa mãn điều kiện:\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)< 10\).Chứng minh rằng a,b,c là độ dài 3 cạnh của một tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)
Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)
Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)
Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\); \(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)
Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\); \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)
Ta có
\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)
\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)
\(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)
\(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)
Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)
Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)
Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)
\(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)
\(\Rightarrow a=b=c\)
Vậy a, b, c là độ dài ba cạnh của một tam giác đều
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:
\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)
Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:
\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)
Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)
Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
Tuy nhiên để đến khi \(a=b=c=1\) thì:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)
Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)
Chứng minh sẽ hoàn tất nếu ta chỉ được:
\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)
Vậy theo bất đẳng thức Cauchy ta được:
\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)
\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
Khi đó ta được:
\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)
Vậy ta cần chỉ ra rằng:
\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)
Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.
Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)
Áp dụng Côsi:
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}.\frac{b+1}{8}.\frac{c+1}{8}}=\frac{3}{4}a\)
Tương tự: \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3}{4}b\)
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3}{4}c\)
\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{1}{4}\left(a+b+c+3\right)\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}.1=\frac{3}{4}=\frac{3}{4}\)\(\left(\text{đpcm}\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)
\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\) (vì abc=1) (*)
Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\) (vì abc=1)
=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\) (**)
Từ (*), (**)=> đpcm
Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3
\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)
Tương tự rồi cộng lại:
\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)
Hoàn toàn tương tự ta có:
\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);
\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo bất đẳng thức trên ta được:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{1}{6\left(ab+bc+ca\right)}\)
Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)
Ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\left(3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)< 10\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}< 7\)
\(\Leftrightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}< 7\)
Không giảm tổng quá .Giả sử a là cạnh lớn nhất .Giả b + c < a => 0 < \(\frac{b+c}{a}\)
\(\Rightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}>\frac{2c+b}{b}+\frac{2b+c}{c}+\frac{b+c}{a}\)( không chắc lắm )
= \(\frac{2c}{b}+\frac{2b}{c}+\frac{b+c}{a}+2\)
=\(\frac{2\left(b+c\right)^2}{bc}+\frac{b+c}{a}-2>7\left(VL\right)\)
=>b+ c > a => a ; b ; c là 3 cạnh tam giác ( đpcm )