K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 5 2020

Anh Phuong

Bạn bấm mode-5-3 để tìm min trong trường hợp này ko áp dụng được, vì nếu phân tích theo mode 5-3 \(2k^2+4k-3=2\left(k+1\right)^2-5\ge-5\) thì dấu "=" xảy ra khi \(k=-1\) ko thỏa mãn điều kiện delta \(k\ge\frac{7}{4}\)

Theo lý thuyết hàm bậc 2 thì \(2k^2+4k-2\) đồng biến khi \(k\ge-1\) nghĩa là với \(k\ge\frac{7}{4}\) thì chắc chắn A min sẽ xảy ra khi \(k=\frac{7}{4}\)

Thay \(k=\frac{7}{4}\) vào tính được \(A=\frac{81}{8}\)

Do đó ta thêm bớt: \(A=\left(2k^2+4k-\frac{105}{8}\right)+\frac{81}{8}\)

Và bây giờ chỉ việc phân tích ngoặc đầu thành nhân tử bằng máy tính dễ dàng, máy tính cho 2 nghiệm \(\frac{7}{4};-\frac{15}{4}\), do đó:

\(A=2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)+\frac{81}{8}\)

Do \(k\ge\frac{7}{4}\Rightarrow\left\{{}\begin{matrix}k-\frac{7}{4}\ge0\\k+\frac{15}{4}>0\end{matrix}\right.\) \(\Rightarrow2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)\ge0\)

\(\Rightarrow A\ge0+\frac{81}{8}=\frac{81}{8}\)

Khi có điều kiện delta, thì luôn phải chú ý điểm rơi xem có thỏa mãn điều kiện hay ko, nếu không thì phải tìm cách tách riêng như trong bài này, nếu ko kết quả sẽ sai hết.

NV
19 tháng 4 2020

\(\Delta=4k^2+4k+1-4k^2-8=4k-7\ge0\Rightarrow k\ge\frac{7}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2k+1\\x_1x_2=k^2+2\end{matrix}\right.\)

a/ Kết hợp Viet và đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2k+1\\x_1=2x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2\left(2k+1\right)}{3}\\x_2=\frac{2k+1}{3}\end{matrix}\right.\)

\(\Rightarrow\frac{2\left(2k+1\right)}{3}.\frac{\left(2k+1\right)}{3}=k^2+2\Leftrightarrow2\left(2k+1\right)^2=9\left(k^2+2\right)\)

\(\Leftrightarrow k^2-8k+16=0\Rightarrow k=4\)

b/ \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(2k+1\right)^2-2\left(k^2+2\right)=2k^2+4k-3\)

\(=2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)+\frac{81}{8}\ge\frac{81}{8}\)

\(\Rightarrow A_{min}=\frac{81}{8}\) khi \(k=\frac{7}{4}\)

21 tháng 3 2020

a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)

\(\Delta=\left(k-1\right)^2-2k+5\)

\(=k^2-4x+6=\left(k-2\right)^2+2>0\)

=> PT luôn có nghiệm với mọi k

NV
27 tháng 3 2022

a. Phương trình có 2 nghiệm phân biệt khi:

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)

\(\Rightarrow m< \dfrac{5}{4}\)

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=x_1-3x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)

\(\Leftrightarrow x_1-3x_2=5-4m\)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=m^2-1\)

\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)

\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)

NV
21 tháng 8 2021

\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)

(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))

Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)

\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\) 

\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)

Thế vào \(x_1x_2=2m\)

\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)

\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)

\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))

17 tháng 6 2022

Cái này phân tích đề ra là lm được bạn nhé

 

10 tháng 5 2022

`1)`

$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb

$b\big)$

Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)

\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)

\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)

18 tháng 5 2022

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=\left(m+1\right)^2+32>0\left(\text{đúng }\forall m\right)\)

Theo Vi-ét: \(\begin{cases} x_1+x_2=-2(m+1)=-2m-2\\ x_1x_2=-8 \end{cases}\)

Vì $x_1$ là nghiệm của PT nên  \(x_1^2=-2(m+1)x_1+8\)

Ta có \(x_1^2=x_2\)

\(\Leftrightarrow-2\left(m+1\right)x_1+8=x_2\\ \Leftrightarrow x_2+2mx_1+2x_1-8=0\\ \Leftrightarrow\left(x_1+x_2\right)+2mx_1+x_1-8=0\\ \Leftrightarrow x_1\left(2m+1\right)-2m-10=0\\ \Leftrightarrow x_1=\dfrac{2m+10}{2m+1}\)

Mà \(x_1+x_2=-2m-2\Leftrightarrow x_2=-2m-2-\dfrac{2m+10}{2m+1}=\dfrac{-4m^2-8m-12}{2m+1}\)

Ta có \(x_1x_2=-8\)

\(\Leftrightarrow\dfrac{2m+10}{2m+1}\cdot\dfrac{-4m^2-8m-12}{2m+1}=-8\\ \Leftrightarrow\left(2m+10\right)\left(m^2+2m+3\right)=2\left(2m+1\right)^2\\ \Leftrightarrow m^3+3m^2+9m+14=0\\ \Leftrightarrow m^3+2m^2+m^2+2m+7m+14=0\\ \Leftrightarrow\left(m+2\right)\left(m^2+m+7\right)=0\\ \Rightarrow m=-2\)

Vậy $m=-2$