Cho tam giác ABC cân tại A, A=30độ. Vẽ BH ⊥ AC (H∈ AC), CK ⊥ AB (K ∈ AB).
Gọi I là giao điểm của BH và CK.
Tính số đo góc BAI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa lại :
Cho tam giác ABC cân tại A, \(\widehat{A}=30^o\). Vẽ BH ⊥ AC (H ∈ AC), CK ⊥ AB (K ∈ AB).
Gọi I là giao điểm của BH và CK.
Tính số đo góc \(\widehat{BAI}\)
giải:
ta có : \(\Delta ABC\)cân tại A
=> AB=AC(t/c \(\Delta\)cân)
xét \(\Delta BAH\)và\(\Delta CAK\)
\(\widehat{A}-chung\)
AB=AC
\(\widehat{AKC}=\widehat{AHB}=90^o\)
=>\(\Delta BAH\)=\(\Delta CAK\)(ch-gn)
=>\(\widehat{ABH}=\widehat{ACK}\left(2ctu\right)\)
=>\(\widehat{ABI}=\widehat{ACI}\)
xét \(\Delta ABI\)VÀ \(\Delta ACI\)
AB=AC(cmt)
\(\widehat{ABI}=\widehat{ACI}\)(cmt)
AI-cạnh chung
=>\(\Delta ABI\)=\(\Delta ACI\)(cgc)
=>\(\widehat{BAI}=\widehat{CAI}\left(2gtu\right)\)
ta có : \(\widehat{BAI}+\widehat{CAI}=\widehat{A}=30^o\)
mà\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)
=> \(\widehat{BAI}=\widehat{CAI}=15^o\)
a)xét 2 tam giác vuông AHB và AKC có:
\(\widehat{A}\) là góc chung
AB=AC (ΔABC cân tại A)
⇒ΔAHB=ΔAKC (cạnh huyền góc nhọn)
⇒BH=CK (2 cạnh tương ứng)
b) xét 2 tam giác vuông AHI và AKI có:
AH=AK (ΔAHB=ΔAKC)
AI là cạnh chung
⇒ ΔAHI=ΔAKI (cạnh huyền cạnh góc vuông)
⇒\(\widehat{HAI}\) =\(\widehat{KAI}\) (2 góc tương ứng)
⇒AI là tia phân giác của\(\widehat{HAK}\)
a) Xét tam giác BCH và tam giác CBK có
góc KBC = góc HCB ( vì tam giác ABC cân )
BC : cạnh chung
góc BKC = CHB = 90 độ (GT )
Từ 3 điều trên => Tam giác BCH = tam giác CBK (cạnh huyền - góc nhọn )
b) Vì tam giác BCH = tam giác CBK ( chứng minh ở câu a )
=> BH = CK ( cặp cạnh tương ứng )
c) Vì tam giác BCH = tam giác CBK ( câu a )
=> CH = BK ( 2 cạnh tương ứng )
Xét tam giác KIB và tam giác HIC có :
Góc KIB = góc HIC ( 2 góc đối đỉnh ) (1)
BK = CH ( chứng minh trên ) (2)
góc IKB = góc IHC = 90 độ (GT ) (3)
Từ (1) (2) và(3) => tam giác KIB = tam giác HIC ( g-c-g )
=> IB = IC ( cặp cạnh tương ứng )
=> tam giác BIC cân tại I
a, Xét \(\Delta\)tam giác vuông AKC và tam giác vuông AHB ta có :
AB=AC(do tam giácABC cân tại a)
góc A chung
=}tam giácAkc =tam giác AHB (ch_gn)
=}AH=AK(2 cạnh tương ứng)
b,Do AK=AH(cm câu a)=} I thuộc phân giác góc A
=}AI là phân giác góc A
k hộ mình nhé
a) Xét ΔACK và ΔABH
Ta có: ∠AKC = ∠AHB = 900 (gt)
AB = AC (ΔABC cân tại A)
∠BAC chung
nên ΔACK = ΔABH (cạnh huyền-cạnh góc vuông)
suy ra AH = AK
b) Ta có BH⊥AC; CK⊥AB(gt)
mà BH và CK cắt nhau tại I
nên I là trực tâm của ΔABC
suy ra AI là đường cao của ΔABC
mà ΔABC cân tại A
nên AI la Phân giác của ∠BAC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
b: Xet ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chug
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM vuông góc BC
nen IM là phân giác của góc BIC
c: Xét ΔABC có AK/AB=AH/AC
nên HK//BC