K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

a/\(\frac{10x}{5x^2}=\frac{2}{x}\)

b/\(\frac{x\left(x^2-y^2\right)}{x^2\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}=\frac{x-y}{x}\)

20 tháng 12 2018

ĐKXĐ : \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)

a) \(A=\frac{x^2-10x+25}{x^2-5x}\)

\(A=\frac{\left(x-5\right)^2}{x\left(x-5\right)}\)

\(A=\frac{x-5}{x}\)

b) Để phân thức bằng 0 thì \(x-5=0\Leftrightarrow x=5\)

Mà ĐKXĐ \(x\ne5\)=> ko có giá trị của x để phân thức bằng 0

c) Để phân thức bằng 0 thì :

\(\frac{x-5}{x}=\frac{5}{2}\)

\(2x-10=5x\)

\(-10=3x\)

\(x=\frac{-3}{10}\)

20 tháng 12 2018

a,\(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\)

b,Để phân thức có giá trị bằng 0 thì \(\frac{x-5}{x}=0\)

Mà: Theo điều kiện ta có: \(x\ne0\)

nên để: \(\frac{x-5}{x}=0\)thì: \(x-5=0\Leftrightarrow x=5\)

c,Để phân thức có giá trị bằng 5/2 thì:

\(\frac{x-5}{x}=\frac{5}{2}\)

\(\Leftrightarrow2\left(x-5\right)=5x\)

\(\Leftrightarrow2x-10=5x\)

\(\Leftrightarrow2x-5x=10\)

\(\Leftrightarrow-3x=10\Rightarrow x=-\frac{10}{3}\)

=.= hk tốt!!

trả lời:

\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\frac{\left(x-y\right)^3+z^3+3x^2y-3xy^2+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)

\(=\frac{\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2zx}\)

\(=\frac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)

\(=\frac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-zx\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)

\(=\frac{x-y+x}{2}\)

~hok tốt~

8 tháng 8 2016

1) \(\left(a-b\right)\cdot\sqrt{\frac{ab}{\left(a-b\right)^2}}=\left(a-b\right)\cdot\frac{\sqrt{ab}}{a-b}=\sqrt{ab}\)

2) \(\frac{x-y}{y}\cdot\sqrt{\frac{y^4}{x^2-2xy+y^2}}=\frac{x-y}{y}\cdot\frac{\sqrt{y^4}}{\sqrt{\left(x-y\right)^2}}=\frac{x-y}{y}\cdot\frac{y^2}{x-y}=y\)

NV
12 tháng 5 2019

\(x^2-1=\frac{1}{4}\left(a^2+\frac{1}{a^2}+2\right)-1=\frac{1}{4}\left(a^2+\frac{1}{a^2}-2\right)=\frac{1}{4}\left(a-\frac{1}{a}\right)^2\)

Tương tự \(y^2-1=\frac{1}{4}\left(b-\frac{1}{b}\right)^2\)

\(P=\frac{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)-\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)+\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}\)

\(=\frac{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}-ab+\frac{a}{b}+\frac{b}{a}-\frac{1}{ab}}{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}+ab-\frac{a}{b}-\frac{b}{a}+\frac{1}{ab}}=\frac{\frac{a}{b}+\frac{b}{a}}{ab+\frac{1}{ab}}=\frac{a^2+b^2}{a^2b^2+1}\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2019

Lời giải:

a)

\(=\frac{(\sqrt{x}+1)\sqrt{x}(\sqrt{x}-\sqrt{y}))\sqrt{x}+\sqrt{y})}{(x-y)x(\sqrt{x}+1)}=\frac{(\sqrt{x}+1)\sqrt{x}(x-y)}{(x-y)x\sqrt{x}+1)}=\frac{1}{\sqrt{x}}\)

b)

\(=\frac{(2-\sqrt{x}-\sqrt{x}-3)(2-\sqrt{x}+\sqrt{x}+3)}{1+2\sqrt{x}}=\frac{(-1-2\sqrt{x}).5}{2\sqrt{x}+1}=\frac{-5(2\sqrt{x}+1)}{2\sqrt{x}+1}=-5\)

4 tháng 7 2019

\(a,\frac{\left(\sqrt{x}+1\right)\cdot\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\sqrt{x}\left(x+1\right)}\)\(=\frac{\left(\sqrt{x}+1\right)\sqrt{x}\left(x-y\right)}{\left(x-y\right)\sqrt{x} \left(x+1\right)}\)\(=\frac{\sqrt{x}+1}{x+1}\)

\(b,\frac{\left(2-\sqrt{x}\right)^2-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{4+x-4\sqrt{x}-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{1+x-5\sqrt{x}}{1+2\sqrt{x}}\)