Cho tam giác ABC vuông tại A có góc B = 30 độ. Trên tia đối của tia AC lấy điểm D sao cho AD=AC. Chứng minh tam giác BCD là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh được tam giác ABC = tam giác A.BD (c-g-c), từ đó suy ra được tam giác BCD đều
b) Dùng kết quả câu a, ta có BC = CD = 2AC
a: Xét ΔABD vuông tại A và ΔABC vuông tại A có
AB chung
AD=AC
Do đó: ΔABD=ΔABC
b: Ta có: ΔABD=ΔABC
nên BD=BC
hay ΔBDC cân tại B
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: BC=căn 8^2+6^2=10cm
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CB=CD
Xét ΔCDE và ΔCBE có
CD=CB
góc DCE=góc BCE
CE chung
=>ΔCDE=ΔCBE
c: ΔCBD có CB=CD nên ΔCBD cân tại C