Cho pt 2x^2-6x+m-2 =0
Giả sử pt có nghiệm x1, x2
Tìm GTNN của bt
A= x1^2+x2^2.
Mn giải hộ tui vs tks ạ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)
Để phương trình có hai nghiệm thì -4m+24>=0
=>-4m>=-24
hay m<=6
Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)
\(\Leftrightarrow-2\left(m-5\right)=8\)
=>m-5=-4
hay m=1(nhận)
a) với m=3 phương trình đã cho có dạng
\(2x^2-6x+3+7=0\Leftrightarrow2x^2-6x+10=0\Leftrightarrow x^2-3x+5=0\circledast\)
ta có△=\(\left(-3\right)^2+4.1.5=-11< 0\)
⇒ phương trình \(\circledast\) vô nghiệm
Vậy phương trình đã cho vô nghiệm với m=3
b)phương trình có một nghiệm bằng -4
\(2.\left(-4\right)^2-6.\left(-4\right)+m+7=0\Leftrightarrow32+24+m+7=0\Leftrightarrow63+m=0\Leftrightarrow m=-63\)
Vậy m=-63 là giá trị cần tìm
Nhầm mất :v
\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=2^3-3.\left(-2\right).2=20\)
Pha cuối hơi sai : sửa
A = \(2\left(2^2-3.\left(-2\right)\right)=2\left(4+6\right)=2.10=20\)
Pt có nghiệm=>\(\Delta^'\ge0\)
=>9-2(m-2)≥0
=>13-2m≥0
=>m≤\(\frac{13}{2}\)
Theo Viet ta có:\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=\frac{m-2}{2}\end{cases}}\)
Khi đó:\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=11-m\)
=>\(A\ge11-\frac{13}{2}=\frac{9}{2}\)
Vậy...