Cho ba điểm A, B, C nằm trên hệ trục tọa độ Đề Các, có tọa độ lần lượt là (XA, YA), (XB, YB), (XC, YC).Tìm khoảng cách lớn nhất d giữa hai điểm trong 3 điểm trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết Chương trình diện tích tứ giác ABCD khi biết tọa độ Điểm A(xA,yA); B(xB,yB); C(xC,yC); D(xD,yD)
a) Vì A, B thuộc (P) nên:
x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2 , B ( 2 ; 2 )
b) Gọi phương trình đường thẳng (d) là y = ax + b.
Ta có hệ phương trình:
− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1
Vậy (d): y = 1 2 x + 1 .
c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)
=> OC = 1 và OD = 2
Gọi h là khoảng cách từ O tới (d).
Áp dụng hệ thức về cạnh và đường cao vào ∆ vuông OCD, ta có:
1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5
Vậy khoảng cách từ gốc O tới (d) là 2 5 5 .
Đáp án A
Hoành độ giao điểm của đường thẳng Δ có phương trình y = 2 x + 1 và đồ thị của hàm số y = x 3 − x + 3 là nghiệm PT: