\(mx^2-2\left(m+1\right)x+m+3=0\)
Giả sử các phương trình sau đều có 2 nghiệm x1, x2. Tìm biểu thức chứa x1, x2 độc lập với m
Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì pt luôn có nghiệm x1, x2 với mọi m nên theo hệ thức Vi-et ta có:x1+x2=m+1 và x1.x2=-6.Biểu thức cần tìm là x1.x2=-6
Theo định lí Viet thì \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1.x_2=\left(3m-3\right)^2\end{matrix}\right.\)
\(\dfrac{16}{9}.x_1.x_2=\dfrac{16}{9}.\left(3m-3\right)^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left[\dfrac{4}{3}.\left(3m-3\right)\right]^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left(4m-4\right)^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left(x_1+x_2-4\right)^2\)
Đối chiếu ⇒ \(\left\{{}\begin{matrix}a=-4\\b=\dfrac{16}{9}\end{matrix}\right.\)
⇒ \(\dfrac{b}{a}=\dfrac{-4}{9}\)
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`
`<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`
`<=>m^2+m+3 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`
`<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`
`=>x_1+x_2-2x_1.x_2=6`
- Xét phương trình đề cho có :
\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)
\(=m^2-3m+3\ge\dfrac{3}{4}>0\)
- Phương trình luôn có hai nghiệm phân biệt với mọi m .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)
tìm đk m khác 0
đenta' = (m+1)2-m2-3m= 2m-2 >0 (=) m>1
áp dụng hệ thức vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}=2+\frac{1}{m}\\x_1.x_2=\frac{m+3}{m}=1+\frac{3}{m}\end{cases}}\)
=) x1x2 - 3(x1+x2)=-5