K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

tìm đk m khác 0

 đenta' = (m+1)2-m2-3m= 2m-2 >0 (=) m>1

áp dụng hệ thức vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}=2+\frac{1}{m}\\x_1.x_2=\frac{m+3}{m}=1+\frac{3}{m}\end{cases}}\)

=) x1x- 3(x1+x2)=-5

21 tháng 4 2020

Vì pt luôn có nghiệm x1, x2 với mọi m nên theo hệ thức Vi-et ta có:x1+x2=m+1 và x1.x2=-6.Biểu thức cần tìm là x1.x2=-6

12 tháng 1 2021

Theo định lí Viet thì \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1.x_2=\left(3m-3\right)^2\end{matrix}\right.\)

\(\dfrac{16}{9}.x_1.x_2=\dfrac{16}{9}.\left(3m-3\right)^2\)

⇒ \(\dfrac{16}{9}.x_1.x_2=\left[\dfrac{4}{3}.\left(3m-3\right)\right]^2\)

⇒ \(\dfrac{16}{9}.x_1.x_2=\left(4m-4\right)^2\)

⇒ \(\dfrac{16}{9}.x_1.x_2=\left(x_1+x_2-4\right)^2\)

Đối chiếu ⇒ \(\left\{{}\begin{matrix}a=-4\\b=\dfrac{16}{9}\end{matrix}\right.\)

⇒ \(\dfrac{b}{a}=\dfrac{-4}{9}\)

4 tháng 3 2021

(m-3)x^2 phải không bạn ?? 

 

18 tháng 9 2019

Đáp án: A

Theo hệ thức Vi-ét ta có:

Ta xét các phương án:

 

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

16 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

      `<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`

                   `<=>m^2+m+3 > 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`

                        `<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`

              `=>x_1+x_2-2x_1.x_2=6`

16 tháng 5 2023

thanks

9 tháng 2 2021

- Xét phương trình đề cho có :

\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)

\(=m^2-3m+3\ge\dfrac{3}{4}>0\)

- Phương trình luôn có hai nghiệm phân biệt với mọi m .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)