Cho phân số: A=n−4 / n+4.
Có bao nhiêu số nguyên n để A là số nguyên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
muốn A là số nguyên suy ra n-7 thuộc Ư(2)=(-1;1;-2;2)
xét:
n-7 | -1 | 1 | -2 | 2 |
n | 6 | 8 | 5 | 9 |
vậy n thuộc (6;8;5;9)
k mik nha
a) HS tự làm.
b) HS tự làm.
c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.
Do đó n ∈ (-5; -3).
a) -Để B là phân số thì: \(n-4\ne0\Rightarrow n\ne4\) (thỏa mãn n là số nguyên).
b) -Để B là số nguyên thì: \(n⋮\left(n-4\right)\)
=>\(\left(n-4+4\right)⋮\left(n-4\right)\)
=>\(4⋮\left(n-4\right)\)
=>\(n-4\inƯ\left(4\right)\)
=>\(n-4\in\left\{1;-1;4;-4\right\}\)
=>\(n\in\left\{5;3;8;0\right\}\) (đều thỏa mãn điều kiện n nguyên và \(n\ne4\)).
- Ta có: \(A=\frac{n+1}{n-3}\)
- Để \(A\inℤ\)\(\Leftrightarrow\)\(n+1⋮n-3\)
- Ta lại có: \(n+1=\left(n-3\right)+4\)
- Để \(n+1⋮n-3\)\(\Leftrightarrow\)\(\left(n-3\right)+4⋮n-3\)mà \(n-3⋮n-3\)
\(\Rightarrow\)\(4⋮n-3\)\(\Rightarrow n-3\inƯ\left(4\right)\in\left\{\pm1;\pm2;\pm4\right\}\)
- Ta có bảng giá trị:
\(n-3\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) |
\(n\) | \(2\) | \(4\) | \(1\) | \(5\) | \(-1\) | \(7\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\)
a, đk n khác 1
b, \(\Rightarrow n-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Ta có: \(A=-\dfrac{4}{n-1}\)
a) Để \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
b) Để \(A\in Z\) thì \(n-1\inƯ\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
v. v só n thf a nguyên
Để A là số nguyên thì n-4\(⋮\)n+4
\(\Rightarrow\)n+4-8\(⋮\)n+4
\(\Rightarrow\)8\(⋮\)n+4
\(\Rightarrow n+4\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-2;-6;0;-8;4;-12\right\}\)
Vậy có 8 số nguyên n để A là số nguyên.