cho tam giác abc có ab=ac. trên tia đối của tia ba lấy điểm d và trên tia đối của tia ca lấy điểm e sao cho bd=ce. CMR:
a)BE=Ce
b)DI=IE
c)AI vông góc với BC
d)BC//DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh rằng: BE=CD
Xét tam giác ADC và tam giác AEB, ta có
- AC = AB (đề bài cho)
- góc A chung
- AD = AB + BD, và AE = AC + CE. Mà AB = AC, BD = CE, nên AD = AE
==> tam giác ADC = tam giác AEB (cạnh - góc - cạnh)
==> BE = CD (đpcm)
2,3) mình có việc nên ko ghi ra bây giờ được
Các tam giác cân ABC và ADC có chung góc ở đỉnh ∠A nên ∠B1 = ∠ADE. Mà hai góc này ở vị trí đồng vị nên suy ra BC // DE.
a: Xét ΔBAD và ΔBKD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)
hay DK\(\perp\)BC
b: Xét ΔBEC có BE=BC
nên ΔBEC cân tại B
mà BI là đường phân giác
nên BI là đường cao