3: Cho ∆ABC vuông tại A, đường cao AH, trên cạnh AC lấy điểm E sao
cho : AE = AH. Trên cạnh BC lấy điểm F sao cho BF = BA. Chứng minh rằng:
a) AF là tia phân giác của góc EAH.
b) CF. CH = CE . CA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{CAE}=90^0\)
và \(\widehat{BEA}+\widehat{HAE}=90^0\)
nên \(\widehat{CAE}=\widehat{HAE}\)
hay AE là tia phân giác của \(\widehat{HAC}\)(Đpcm)
a.Ta có: tam giác ABC là tam giác vuông cân tại A
BH=HC
B=C
Xét tam giác AHB và tam giác AHC ta có:
AH là cạnh chung
BH=HC
B=C
=>Tam giác AHB =tam giác AHC (c-g-c)
b.Theo câu a ta có:
BHA=CHA(2 góc tg ứng)
Mà BHA+CHA=180 độ(kề bù)
=>BHA=CHA=90 độ
=>AH vuông góc với BC
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
a: \(\widehat{DAE}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{HAC}\right)=\dfrac{1}{2}\cdot90^0=45^0\)
b: Xét ΔAEH và ΔAEF có
AE chung
\(\widehat{HAE}=\widehat{FAE}\)
AH=AF
Do đó: ΔAEH=ΔAEF
c: Ta có: ΔAEH=ΔAEF
nên \(\widehat{AHE}=\widehat{AFE}=90^0\)
=>EF⊥AC
mà AC⊥AB
nên EF//AB
Cần một ai đó giải đáp
MK CẦN GẤP
a) E thuộc AC, F thuộc BC và AE=AH; BF=BA
=> EF _|_ BC
Xét tam giác AHF và tam giác AEF có:
AF chung
AH=AE (gt)
^AHF = ^AEF (=900)
=> tam giác AHF= tam giác AEF (cgc)
=> ^HAF = ^FAE (2 góc tương ứng)
=> AF là phân giác ^EAH