K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

(3x-2)(3x-1)=(3x+1)2

<=> 9x2-3x-6x+2=9x2+6x+1

<=> 9x2-9x+2-9x2-6x-1=0

<=> -15x+1=0

<=> -15x=-1

<=> \(x=\frac{1}{15}\)

3 tháng 3 2019

Xem lại đề

3 tháng 3 2019

minh viet sai:

giai phuong trinh (x-2)^3+(3x-1)(3x 1)=(x 1)^3

9 tháng 1 2019

2( x - 1 ) - 5 = 3( 5 - 3x)

2x - 2 - 5 = 15 - 9x

2x - 7 = 15 - 9x

2x + 9x = 15 + 7

11x = 22

x = 2

Vậy x = 2 

10 tháng 1 2019

\(2\left(x-1\right)-5=3\left(5-3x\right)\)

\(\Leftrightarrow2x-2-5=15-9x\)

\(\Leftrightarrow2x-\left(2+5\right)=15-9x\)

\(\Leftrightarrow2x-7=15-9x\)

\(\Leftrightarrow2x+9x=15+7\)

\(\Leftrightarrow11x=22\)

\(\Leftrightarrow x=22\div11\)

\(\Leftrightarrow x=2\)

\(\text{Vậy }x=2\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

Lời giải:

Với mọi $x$ thuộc ĐKXĐ, ta luôn có:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)

Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)

Do đó pt vô nghiệm.

30 tháng 7 2018

nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?

16 tháng 3 2020

\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)

...

23 tháng 4 2018

\(x^2-3x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x^2-2x-x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(2-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\left(x-1\right)\left(2-x\right)\left(x\ge1\right)\\x-1=\left(x-1\right)\left(x-2\right)\left(x< 1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(2-x-1\right)=0\\\left(x-1\right)\left(x-2-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=1\left(loai\right)\\x=3\left(loai\right)\end{matrix}\right.\end{matrix}\right.\)

19 tháng 2 2021

a)(3x-1)(4x-8)=0

⇔3x-1=0 hoặc 4x-8=0

1.3x-1=0⇔3x=1⇔x=1/3

2.4x-8=0⇔4x=8⇔x=2

phương trình có 2 nghiệm:x=1/3 và x=2

b)(x-2)(1-3x)=0

⇔x-2=0 hoặc 1-3x=0

1.x-2=0⇔x=2

2.1-3x=0⇔-3x=1⇔x=-1/3

phương trình có 2 nghiệm:x=2 và x=-1/3

c)(x-3)(x+4)-(x-3)(2x-1)=0

⇔(x+4)(2x-1)=0

⇔x+4=0 hoặc 2x-1=0

1.x+4=0⇔x=-4

2.2x-1=0⇔2x=1⇔x=1/2

phương trình có hai nghiệm:x=-4 và x=1/2

d)(x+1)(x+2)=2x(x+2)

⇔(x+1)(x+2)-2x(x+2)=0

⇔2x(x+1)=0

⇔2x=0 hoặc x+1=0

1.2x=0⇔x=0

2.x+1=0⇔x=-1

phương trình có 2 nghiệm:x=0 và x=-1