Bài 2: Giải các phương trình sau:
a) 7 – (2x + 4) = - (x + 4)
b) \(\frac{3x-1}{3}=\frac{2-x}{2}\)
c) \(\frac{2\left(3x+5\right)}{3}-\frac{x}{2}=5-\frac{3\left(x+1\right)}{4}\)
d) x2 – 4x + 4 = 9
e) \(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-8}{x^2-4}\)
\(a\text{) }7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow x=7\)
\(b\text{) }\frac{3x-1}{3}=\frac{2-x}{2}\)
\(\Leftrightarrow2\left(3x-1\right)=3\left(2-x\right)\)
\(\Leftrightarrow6x-2=6-3x\)
\(\Leftrightarrow9x=8\Leftrightarrow x=\frac{8}{9}\)
\(c\text{) }\frac{2\left(3x+5\right)}{3}-\frac{x}{2}=5-\frac{3\left(x+1\right)}{4}\)
\(\Leftrightarrow8\left(3x+5\right)-6x=60-9\left(x+1\right)\)
\(\Leftrightarrow24x+40-6x=60-9x-9\)
\(\Leftrightarrow27x=11\Leftrightarrow x=\frac{11}{27}\)
\(d\text{) }x^2-4x+4=9\)
\(\Leftrightarrow\left(x-2\right)^2=3^2\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
\(e\text{) }\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-8}{x^2-4}\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)-x\left(x+2\right)=5x-8\)
\(\Leftrightarrow x^2-x-2x+3-x^2-2x=5x-8\)
\(\Leftrightarrow11-10x=0\Leftrightarrow x=\frac{11}{10}\)
Bổ sung: e) ĐKXĐ: x ≠ \(\pm\) 2