Cho mạch điện gồm hai điện trở R1 = 12 ôm, R2 = 6 ôm mắc song song với nhau giữa hai điểm có hiệu điện thế U = 12 V.(có tóm tắt) a) Tính tính điện trở tương đương của đoạn mạch.
b) Tính cường độ dòng điện qua mạch chính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
\(R_1=12\Omega\)
\(R_2=6\Omega\)
R1//R2
\(U=12V\)
--------------------
a) \(R_{tđ}=?\)
b) \(I=?\)
a) Điện trở tương đương là:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12.6}{12+6}=4\left(\Omega\right)\)
b) Cường độ dòng điện qua mạch chính:
\(I=\dfrac{U}{R_{tđ}}=\dfrac{12}{4}=3\left(A\right)\)
1. a. Theo ht 4' trg đm //, ta có: Rtđ= (R1.R2)/(R1+R2)= (3.6)/(3+6)=2 ôm
b.Theo ĐL ôm, ta có: I= U/Rtđ=24/2=12 A
I1=U/R1=24/3=8 ôm
I2=U/R2=24/6=4 ôm
2. a. Theo ht 4' trg đm //, ta có: Rtđ=(R1.R2.R3)/(R1+R2+R3)= (6.12.4)/(6+12+4)=13,09 ôm
b. Áp dụng ĐL Ôm, ta có: U=I.R=3.13,09=39,27 V
c. Theo ĐL Ôm, ta có:
I1=U/R1=39,27/6=6.545 A
I2=U/R2=39,27/12=3,2725 A
I3=U/R3=39,27/4=9.8175 A
a. Điên trở tương đương của đoạn mạch này là :
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.12}{60+12}=10\Omega\)
b. CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R}=\dfrac{2,4}{10}=0,24A\)
Vì \(R_1\)//\(R_2\) nên :
\(U=U_1=U_2=2,4V\)
CĐDĐ qua các đoạn mạch rẽ là :
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{60}=0,04A\)
\(\Rightarrow I_2=0,24-0,04=0,2A\)
c. Vì điện trở \(R_3\) nt ( \(R_1\)//\(R_2\)) nên điện trở tương đương toàn mạch là :
\(R_{123}=R_{12}+R_3=10+16=26\Omega\)
\(\Rightarrow\) CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R_{123}}=\dfrac{2,4}{26}\approx0,1A\)
Vậy : a. Điện trở tương đương của đoạn mạch \(R_1\)//\(R_2\) là \(10\Omega\)
b. I = 0,24A ; \(I_1=0,04A\) ; \(I_2=0,2A\)
c. \(I_{123}\) = 0,1A
\(MCD:R1nt\left(R2//R3\right)\)
\(=>R=R1+R23=R1+\dfrac{R2\cdot R3}{R2+R3}=18+\dfrac{20\cdot30}{20+30}=30\Omega\)
\(=>I=I1=I23=\dfrac{U}{R}=\dfrac{12}{30}=0,4A\)
Ta có: \(U23=U2=U3=U-U1=12-\left(0,4\cdot18\right)=4,8V\)
\(=>\left\{{}\begin{matrix}I2=\dfrac{U2}{R2}=\dfrac{4,8}{20}=0,24A\\I3=\dfrac{U3}{R3}=\dfrac{4,8}{30}=0,16A\end{matrix}\right.\)
Đáp án:
a. Rtđ=100ΩRtđ=100Ω
b. I1=I2=1,2(A)I1=I2=1,2(A)
Giải thích các bước giải:
a. Điện trở tương đương của đoạn mạch là:
Rtđ=R1+R2=60+40=100(Ω)Rtđ=R1+R2=60+40=100(Ω)
b. Cường độ dòng điện chạy qua mạch chính bằng cường độ dòng điện chạy qua các điện trở và bằng:
I=I1=I2=URtđ=120100=1,2(A)I=I1=I2=URtđ=120100=1,2(A)
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{9.18}{9+18}=6\left(\Omega\right)\)
b. \(U=U1=U2=I1.R1=0,5.9=4,5V\left(R1\backslash\backslash\mathbb{R}2\right)\)
c. \(\left\{{}\begin{matrix}I2=U2:R2=4,5:18=0,25A\\I=I1+I2=0,5+0,25=0,75A\end{matrix}\right.\)
Tóm tắt:
R1 = 12\(\Omega\)
R2 = 6\(\Omega\)
R1//R2
U=12V
a) Rtd =?\(\Omega\)
b) I=? A
Giải:
Vì R1 mắc song song với R2
Điện trở tương đương của đoạn mạch là:
\(R_{td}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12.6}{12+6}=4\Omega\)
b) Vì R1 mắc song song với R2
Ta có: U= U1=U2 =12V
Cường độ dòng điện chạy qua đoạn mạch chính là:
\(I=\dfrac{U}{R_{td}}=\dfrac{12}{4}=3\left(A\right)\)
Đáp số: a) 4\(\Omega\)
b) 3A