tìm GTNN của 5x^2+y^2+110+4xy-14x-6y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+y^2+4xy-14x-6y+2016=y^2+2y\left(2x-3\right)+5x^2-14x+2016\)
\(=y^2+2y\left(2x-3\right)+\left(4x^2-12x+9\right)+\left(x^2-2x+1\right)+2006\)
\(=y^2+2y\left(2x-3\right)+\left(2x-3\right)^2+\left(x-1\right)^2+2006\)
\(=\left(y+2x-3\right)^2+\left(x-1\right)^2+2006\ge2006\)
Dấu "=" xảy ra khi x=y=1
\(E=5x^2+y^2+10+4xy-14x-6y\)
\(=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)
\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)
\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\)
\(\Rightarrow E_{Min}=0\)
\("="\Leftrightarrow x=y=1\)
Ta có E= \(\left(4x^2+y^2+9-6y-12x+4xy\right)+\left(x^2-2x+1\right)\)
=\(\left(2x+y-3\right)^2+\left(x-1\right)^2\)
Vì \(\left(2x+y-3\right)^2+\left(x-1\right)^2\) >= 0
=>E>=0 =>GTNN của E=0 khi: \(x-1=0\) =>\(x=1\)
\(2x+y-3=0\) =>\(2x+y=3\)
=> \(2+y=3\) => \(y=1\)
\(A=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)
\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)
\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\) có GTNN là \(0\)
Dấu "=" xảy ra \(\Leftrightarrow x=1;y=1\)
A = ( 4x^2 + y^2 +9 + 4xy -6y -12x)+(x^2 -2x+1)
= (2x+y-3)^2 +(x-1)^2
Ta có: (2x+y-3)^2 +(x-1)^2 >=0 với mọi x,y
Dấu "=" xảy ra khi: 2x+y-3 =0 và x-1=0
2.1 + y-3 =0 và x=1
-1+y=0 và x=1
y=1 và x=1
Vậy giá trị nhỏ nhất của A là 0 tại x=1 và y=1
\(5x^2+y^2+4xy-14x-6y+2016=4x^2+4xy+y^2-6\left(2x+y\right)+9+x^2+2x+1+2006\)
\(=\left(2x+y\right)^2-6xy+9+\left(x+1\right)^2+2006\)
\(=\left(2x+y-3\right)^2+\left(x+1\right)^2+2006\)
lập luận nha gtnn là 2006
5x^2+y^2+4xy-14x-6y+2016
=4x^2+x^2+y^2+y^2-y^2+4xy-14x-6y+9+49+1958
=4x^2+4xy+y^2+x^2-14x+49+y^2-6y+9-y^2+1958
=(4x^2+4xy+y^2)+(x^2-14x+49)+(y^2-6y+9)-y^2+1958
=(2x+y)^2+(x-7)^2+(y-3)^2-y^2+1958
Mà: + (2x+y)^2+(x-7)^2+(y-3)^2-y^2\(\ge\) 1958
Vậy GTNN là: 1958