K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

ngu em mk no tai lên mk trả lời cho

ta có

a1/a2=a1+a2+a3+...+a2003/a2+a3+a4+...+a2004 (1)

a2/a3=a1+a2+a3+...+a2003/a2+a3+a4+....+a2004 (2)

..........................

a2003/a2004=a1+a2+a3+........+a2003/a2+a3+a4+..............+a2004 (2003)

nhân các đẳng thưcs trên ta được

a1/a2*a2/a3*............*a2003/a2004=(a1+a2+a3+...+a2003/a2+a3+a4+.....+a2004)^2003

rút gon vế trái ta đc

a1/a2004=(a1+a2+a3+...+a2003/a2+a3+a4+....+a2004)^2003

19 tháng 10 2016

mày là thằng hay là con

19 tháng 10 2016

con chó chết với con chuột chết tao là hs đại học đây! 

chào chưa

11 tháng 1 2017

(a+ a2) + (a+ a4) + ... + (a2003 + a1) = 1002                           (1)

Nhưng a+ a+ ... + a2003 = 0 nên từ (1) suy ra a= 1002

Ta lại có: a2003 + a= 1 => a2003 = 1-a1 = 1-1002 =-1001

a+ a2 = 1 => a= 1-a1 = 1-1002 = -1001

21 tháng 1 2016

tick để ủng hộ mình nha

Ta có:

a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0

=1 + 1+...+ 1+a2003(có 1001 số 1)=0

=1001+a2003=0

=>a2003=0-1001

=>a2003= -1001

Ta có:

a2003+a1=1

=>-1001+a1=1

=>a1=1-(-1001)

=>a1=1002

(nếu thấy hay thì **** cho mình nhé)

\

21 tháng 1 2016

 

Ta có:

a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0

=1 + 1+...+ 1+a2003(có 1001 số 1)=0

=1001+a2003=0

=>a2003=0-1001

=>a2003= -1001

Ta có:

a2003+a1=1

=>-1001+a1=1

=>a1=1-(-1001)

=>a1=1002

tick nha

1 tháng 4 2017

\(a=0;\Rightarrow a2003=0;a1=0\)

Chắc thế chứ nhìn đề khó hỉu quá

Chưa chắc đúng đâu nhé

:))

12 tháng 2 2018

Ta có:

a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0

=1 + 1+...+ 1+a2003(có 1001 số 1)=0

=1001+a2003=0

=>a2003=0-1001

=>a2003= -1001

Ta có:

a2003+a1=1

=>-1001+a1=1

=>a1=1-(-1001)

=>a1=1002

k mình nha

12 tháng 2 2018

bn ơi còn a2 nx

29 tháng 1 2017

k hiểu bn ơi

14 tháng 12 2017

Bạn xem hướng dẫn ở đây:

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath

2 tháng 6 2019

Ta có a1 + a2 = a3 + a4 +..+ a2001 + a2002  = a2003 + a1 = 11 (1)

a1 + a2 + a3 +...+a2003 = 0 (2)

Thay (1) vào (2) ta có 11 + 11 +... + 11 + a2003 = 0 (1001 số 11)

                                => 11 x 1001 + a2003 = 0

                                => 11011 + a2003 = 0

                                => a2003               = 0 - 11011

                                => a2003               = -11011

Lại có : a2003 + a1 = 11

=> -11011 + a1 = 11

=> a1                = 11 - (-11011)

=> a1                = 11022

Lại có a1 + a2 = 11

=> 11022 + a2 = 11

=>               a2 = 11 - 11022

=>               a2 = - 11011

Vậy a1 = 11022

      a2003 = - 11011

      a2 = - 11011

2 tháng 6 2019

Ta có:

  \(a_1+a_2+a_3+...+a_{2003}=\left(a_1+a_2\right)+\left(a_3+a_4\right)+...+\left(a_{2001}+a_{2002}\right)+a_{2003}\)

                                                     \(=11+11+...+11+a_{2003}\)( 1001 số 11 )

                                                     \(=11011+a_{2003}=0\)

\(\Rightarrow a_{2003}=-11011\)

        Ta có:

     \(a_{2003}+a_1=-11011+a_1=11\)

\(\Rightarrow a_1=11022\)

        Lại có:

      \(a_1+a_2=11022+a_2=11\)

\(\Rightarrow a_2=-11011\)

   Vậy \(a_1=11022;a_2=a_{2003}=-11011\)