Một phân xưởng theo kế hoạch sản xuất 1200 sản phẩm trong một số ngày quy định. Do mỗi ngày phân xưởng sản xuất vượt mức 20 sản phẩm nên phân xưởng đã hoàn thành sớm hơn kế hoạch 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng phải sản xuất bao nhiêu sản phẩm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là sản ppham xưởng sản xuất trong 1 ngày theo kế hoạch (x>0)
=>Số ngày theo kế hoạch là :\(\frac{110}{x}\)
Số ngày thực tế là \(\frac{1100}{x+5}\)theo gia thiet cua bai toan ta co :
\(\frac{1100}{x}-\frac{1100}{x+5}=2\)
<=>1100(x+5)-1100x=2x(x+5)
<=>2x^2+10x-5500=0
<=>x=50hay x=-55 loai
Vậy theo kế hoạch mỗi ngày phân xưởng phải sản xuất là 50 sản phẩm
Gọi số sản phẩm mà phân xưởng làm trong 1 ngày là x ( x > 0 )
=> Số ngày quy định = \(\frac{1100}{x}\)( ngày )
Mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm
=> Số ngày hoàn thành = \(\frac{1100}{x+5}\)( ngày )
Vì thế kế hoạch hoàn thành sớm hơn quy định 2 ngày
=> Ta có phương trình : \(\frac{1100}{x}-\frac{1100}{x+5}=2\)
\(\Leftrightarrow\frac{1100\left(x+5\right)}{x\left(x+5\right)}-\frac{1100\cdot x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow1100x+5500-1100x=2x^2+10x\)
\(\Leftrightarrow2x^2+10x-1100x-5500+1100x=0\)
\(\Leftrightarrow2x^2+10x-5500=0\)
\(\Delta'=b'^2-ac=5^2-2\cdot\left(-5500\right)=25+11000=11025\)
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-5+\sqrt{11025}}{2}=50\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-5-\sqrt{11025}}{2}=-55\end{cases}}\)
x > 0 => x = 50
Vậy theo kế hoạch , mỗi ngày phân xưởng sản xuất 50 sản phẩm
gọi số sản phẩ mỗi ngày là x(sản phẩm)(0<x<1100,x\(\in N\))
gọi thời gian làm dự định là y(ngày)(y>0)
=>hệ pt:\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(1\right)\end{matrix}\right.\)
*giải pt(1)\(=>\left\{{}\begin{matrix}x=50\left(TM\right)\\x=-55\left(loai\right)\end{matrix}\right.\)
Vậy....
Gọi số sản phẩm họ làm trong 1 ngày theo kế hoạch là x
Gọi số sản phẩm họ làm trong 1 ngày thực tế là y
(sản phẩm/ngày; x; y \(\in N\)*)
Do thực tế, mỗi ngày họ vượt mức 5 sản phẩm => Ta có phương trình:
y - x = 5 (1)
Thời gian họ sản xuất theo kế hoạch là \(\dfrac{1100}{x}\) (ngày)
Thời gian họ sản xuất thực tế là \(\dfrac{1100}{y}\) (ngày)
Do phân xưởng đó hoàn thành kế hoạch sớm hơn 2 ngày => Ta có phương trình:
\(\dfrac{1100}{x}-\dfrac{1100}{y}=2\)
<=> \(\dfrac{1100y-1100x-2xy}{xy}=0\)
<=> \(1100\left(y-x\right)-2xy=0\)
<=> \(5500-2xy=0\)
<=> \(xy=2750< =>x=\dfrac{2750}{y}\)
Thay x = \(\dfrac{2750}{y}\) vào phương trình (1), ta có:
\(y-\dfrac{2750}{y}=5\)
<=> \(y^2-5y-2750=0\)
<=> (y-55)(y+50) = 0
<=> \(\left[{}\begin{matrix}y=55\left(c\right)\\y=-50\left(l\right)\end{matrix}\right.\)
<=> x = 50 (c)
Theo kế hoạch, mỗi ngày phân xưởng sản xuất được 50 sản phẩm
Gọi số sp phải sản xuất mõi ngày theo kế hoạch là x (x>0; x∈N)(sp)
Thời gian hoàn thành công việc theo kế hoạch là : \(\dfrac{1100}{x}\left(ngày\right)\)
Số sp làm trong 1 ngày thực tế là: x+5(sp)
Thời gian hoàn thành sp thực tế là: \(\dfrac{1100}{x+5}\)(ngày)
Vì hoàn thành sớm hơn kes hoạch 2 ngày nên ta có PT:
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
⇔\(1100x+5500-1100x=2x^2+10x\)
⇔\(-2x^2-10x+5500=0\)
⇔\(\left(x-50\right)\left(x+55\right)=0\)
⇔\(\left[{}\begin{matrix}x=50\left(TM\right)\\x=-55\left(Loại\right)\end{matrix}\right.\)
Vậy trong 1 ngày dội phải sản xuất 50 sp theo kế hoạch
Gọi số sản phẩm một ngày của phân xưởng là x(x>0)(sản phẩm)
Số sản phẩm thực tế làm một ngày là: x + 5 (sản phẩm)
Số ngày dự định làm: \(\dfrac{1100}{x}\left(ngày\right)\)
Số ngày thực tế làm: \(\dfrac{1100}{x+5}\left(ngày\right)\)
Theo bài ta có số ngày thực tế ít hơn dự định 2 ngày:
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
\(\Leftrightarrow\dfrac{1100x+5500}{x^2+5x}-\dfrac{1100x}{x^2+5x}=2\)
\(\Leftrightarrow\dfrac{5500}{x^2+5x}=2\)
\(\Leftrightarrow5500=2x^2+10x\)
\(\Leftrightarrow2x^2+10x-5500=0\Leftrightarrow\left[{}\begin{matrix}x=50\left(tm\right)\\x=-55\left(loại\right)\end{matrix}\right.\)
Vậy theo kế hoạch mỗi ngày phân xưởng cần sản xuất 50 sản phẩm
Gọi số sản phẩm theo kế hoạch 1 ngày phân xưởng phải sx là x (sản phẩm) . ĐK 0 < x < 1100
Thời gian hoàn thành kế hoạch theo quy định là \(\frac{1100}{x}\)(ngày)
Số sản phẩm mỗi ngày xưởng thực hiện là x + 5 (sản phẩm)
Thời gian xưởng thực hiện là \(\frac{1100}{x+5}\)(ngày)
Vì xưởng hoàn thành kế hoạch sớm hơn quy định 2 ngày , ta có pt
=>\(\frac{1100}{x}-2=\frac{1100}{x+5}\)
=>\(1100\left(x+5\right)-2x\left(x+5\right)=1100x\)
<=>\(2x^2+10x-5500=0\)
=>\(\orbr{\begin{cases}x_1=50\left(tm\right)\\x_2=-55\left(k^0tm\right)\end{cases}}\)
Vậy theo kế hoạch mỗi ngày xưởng phải sx 50 sản phẩm
Gọi năng suất làm việc theo dự kiến của xí nghiệp là x(sản phẩm/ngày), (x > 4)
+) Theo dự kiến: Mỗi ngày phân xưởng sản xuất x sản phẩm, tổng sản phẩm là 200 sản phẩm và thời gian sản xuất là 200/x ngày
+ Thực tế: 5 ngày đầu phân xưởng sản xuất x – 4 (sản phẩm/ngày), số sản phẩm sản xuất được là 5 (x – 4). Những ngày sau mỗi ngày phân xưởng sản xuất x + 10 (sản phẩm/ngày), số sản phẩm sản xuất được là 220 – 5x với thời gian sản xuất là 220 - 5 x x + 10 (ngày)
*) Vì thực tế xí nghiệp đã hoàn thành công việc sớm hơn 1 ngày so với dự định nên ta có phương trình:
Vậy theo dự kiến mỗi ngày phân xưởng sản xuất 20 sản phẩm
Đáp án: D
Gọi x là số sản phẩm dự định sản xuất trong 1 ngày.(1200>x>0)
theo đề bài ta có phương trình :
\(\frac{1200}{x+20}=\frac{1200}{x}+3\)
Giải ra ta được:
x=80
Vậy theo kế hoạch mỗi ngày xưởng sản xuất 80 sản phẩm.