67+x+y=180 và y-x=17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: x+y = 10
hay x+x = 10 ( vì x=y)
2x = 10
x = 10 : 2
x = 5
b) Ta có: 2x + 3y = 180
hay 2x + 3x = 180 ( vì x = y)
5x = 180
x= 180 : 5
x = 36
Lời giải:
a.
30% x + x -15=-67
0,3 x +x=-67+15
1,3x=-52
x=-52:1,3=-40
b. x,y có điều kiện gì không bạn?
B=-18+y+7+x-10-8
Thay x=5,y=7 vào biểu thức ta có:
B=-18+y+7+x-10-8
=-18+7+7+5-10-8
=19
Vậy giá trị của biểu thức khi x=5,y=7 là 19
C=x-758+[67+(-38)-(-758)]
Thay x=45 vào biểu thức ta có:
C=x-758+[67+(-38)-(-758)]
=45-758+[67+(-38)-(-758)]
=45-758+757
=44
Vậy giá trị của biểu thức khi x=45 là 44
D=a+(-17)-[-4+(-440)+440]
Thay a=65 vào biểu thúc ta có:
D=a+(-17)-[-4+(-440)+440]
=65+(-17)-[-4+(-440)+440]
=65+(-17)-(-4)
=52
Vậy giá trị của biểu thức khi a=65 là 52
Lời giải:
a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$
$2x=10$
$x=5$
$\Rightarrow y=x=5$
Vậy $(x,y)=(5,5)$
b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$
$5x=180$
$x=36$
$y=x=36$
Vậy $(x,y)=(36,36)$
c. Thay $y=2x$ vào điều kiện đầu thì:
$3x+5.2x=13$
$13x=13$
$x=1$
$y=2x=2$
Vậy $(x,y)=(1,2)$
a) Ta có: x=y
mà x+y=10
nên \(x=y=\dfrac{10}{2}=5\)
b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Ta có (x + y) - (x - 2y) = 180 - 60
x + y - x + 2y = 120
3y = 120
y = 40
Ta có x + y = 180
\(\Rightarrow\) x = 180 - y = 180 - 40 = 140
7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)
Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)
\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
4) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)
\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)
\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)
\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)
6) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)
\(\dfrac{x+11}{13}=1\Rightarrow x=2\)
\(\dfrac{y+12}{13}=1\Rightarrow y=1\)
\(\dfrac{z+13}{15}=1\Rightarrow z=2\)
7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)
\(\Rightarrow x=4k,y=5k\)
\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)
\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)
\(67+x+y=180\) và \(y-x=17\)
=> \(x+y=180-67=113\)
Đưa về dạng tổng - hiệu
y = ( 113 + 17 ) : 2 = 65
x = 113 - 65 = 48
xD